6S-Like scr3559 RNA Affects Development and Antibiotic Production in Streptomyces coelicolor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UJEP-SGS-2020-53-002-2
Jan Evangelista Purkyně University in Ústí nad Labem
PROGRES Q25/LF1
Charles University
SVV260520
Charles University
04681
Natural Sciences and Engineering Research Council
PubMed
34683325
PubMed Central
PMC8539372
DOI
10.3390/microorganisms9102004
PII: microorganisms9102004
Knihovny.cz E-zdroje
- Klíčová slova
- 6S RNA, Streptomyces, antibiotics, secondary metabolism, small RNA,
- Publikační typ
- časopisecké články MeSH
Regulatory RNAs control a number of physiological processes in bacterial cells. Here we report on a 6S-like RNA transcript (scr3559) that affects both development and antibiotic production in Streptomyces coelicolor. Its expression is enhanced during the transition to stationary phase. Strains that over-expressed the scr3559 gene region exhibited a shortened exponential growth phase in comparison with a control strain; accelerated aerial mycelium formation and spore maturation; alongside an elevated production of actinorhodin and undecylprodigiosin. These observations were supported by LC-MS analyses of other produced metabolites, including: germicidins, desferrioxamines, and coelimycin. A subsequent microarray differential analysis revealed increased expression of genes associated with the described morphological and physiological changes. Structural and functional similarities between the scr3559 transcript and 6S RNA, and its possible employment in regulating secondary metabolite production are discussed.
Zobrazit více v PubMed
Kelemen G.H., Buttner M.J. Initiation of aerial mycelium formation in Streptomyces. Curr. Opin. Microbiol. 1998;1:656–662. doi: 10.1016/S1369-5274(98)80111-2. PubMed DOI
Flardh K., Buttner M.J. Streptomyces morphogenetics: Dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 2009;7:36–49. doi: 10.1038/nrmicro1968. PubMed DOI
Flardh K., Richards D.M., Hempel A.M., Howard M., Buttner M.J. Regulation of apical growth and hyphal branching in Streptomyces. Curr. Opin. Microbiol. 2012;15:737–743. doi: 10.1016/j.mib.2012.10.012. PubMed DOI
Bobek J., Strakova E., Zikova A., Vohradsky J. Changes in activity of metabolic and regulatory pathways during germination of S. coelicolor. BMC Genomics. 2014;15:1173. doi: 10.1186/1471-2164-15-1173. PubMed DOI PMC
McCormick J.R., Flardh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol. Rev. 2012;36:206–231. doi: 10.1111/j.1574-6976.2011.00317.x. PubMed DOI PMC
Hopwood D.A. Forty years of genetics with Streptomyces: From in vivo through in vitro to in silico. Pt 9Microbiology. 1999;145:2183–2202. doi: 10.1099/00221287-145-9-2183. PubMed DOI
Claessen D., de Jong W., Dijkhuizen L., Wosten H.A. Regulation of Streptomyces development: Reach for the sky! Trends Microbiol. 2006;14:313–319. doi: 10.1016/j.tim.2006.05.008. PubMed DOI
Majdalani N., Vanderpool C.K., Gottesman S. Bacterial small RNA regulators. Crit. Rev. Biochem. Mol. Biol. 2005;40:93–113. doi: 10.1080/10409230590918702. PubMed DOI
Wassarman K.M. 6S RNA, a global regulator of transcription. Microbiol. Spectr. 2018;6:355–367. doi: 10.1128/microbiolspec.RWR-0019-2018. PubMed DOI PMC
Gildehaus N., Neusser T., Wurm R., Wagner R. Studies on the function of the riboregulator 6S RNA from E. coli: RNA polymerase binding, inhibition of in vitro transcription and synthesis of RNA-directed de novo transcripts. Nucleic Acids Res. 2007;35:1885–1896. doi: 10.1093/nar/gkm085. PubMed DOI PMC
Wassarman K.M., Saecker R.M. Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science. 2006;314:1601–1603. doi: 10.1126/science.1134830. PubMed DOI
Willkomm D.K., Minnerup J., Huttenhofer A., Hartmann R.K. Experimental rnomics in aquifex aeolicus: Identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res. 2005;33:1949–1960. doi: 10.1093/nar/gki334. PubMed DOI PMC
Barrick J.E., Sudarsan N., Weinberg Z., Ruzzo W.L., Breaker R.R. 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA. 2005;11:774–784. doi: 10.1261/rna.7286705. PubMed DOI PMC
Panek J., Bobek J., Mikulik K., Basler M., Vohradsky J. Biocomputational prediction of small non-coding RNAs in Streptomyces. BMC Genomics. 2008;9:217. doi: 10.1186/1471-2164-9-217. PubMed DOI PMC
Panek J., Krasny L., Bobek J., Jezkova E., Korelusova J., Vohradsky J. The suboptimal structures find the optimal RNAs: Homology search for bacterial non-coding RNAs using suboptimal RNA structures. Nucleic Acids Res. 2011;39:3418–3426. doi: 10.1093/nar/gkq1186. PubMed DOI PMC
Mikulik K., Bobek J., Zidkova J., Felsberg J. 6S RNA modulates growth and antibiotic production in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 2014;98:7185–7197. doi: 10.1007/s00253-014-5806-4. PubMed DOI
Sambrook J.R., Russell D.W. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY, USA: 2001. p. A2.2.
Kieser T., Bibb M.J., Buttner M.J., Chater K.F., Hopwood D.A. Practical Streptomyces Genetics. 2nd ed. John Innes Foundation; Norwich, UK: 2000.
Shima J., Hesketh A., Okamoto S., Kawamoto S., Ochi K. Induction of actinorhodin production by rpsl (encoding ribosomal protein s12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2) J. Bacteriol. 1996;178:7276–7284. doi: 10.1128/jb.178.24.7276-7284.1996. PubMed DOI PMC
MacNeil D.J., Occi J.L., Gewain K.M., MacNeil T., Gibbons P.H., Ruby C.L., Danis S.J. Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene. 1992;115:119–125. doi: 10.1016/0378-1119(92)90549-5. PubMed DOI
Janssen G.R., Bibb M.J. Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene. 1993;124:133–134. doi: 10.1016/0378-1119(93)90774-W. PubMed DOI
Wilkinson C.J., Hughes-Thomas Z.A., Martin C.J., Bohm I., Mironenko T., Deacon M., Wheatcroft M., Wirtz G., Staunton J., Leadlay P.F. Increasing the efficiency of heterologous promoters in actinomycetes. J. Mol. Microbiol. Biotechnol. 2002;4:417–426. PubMed
Redenbach M., Kieser H.M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D.A. A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol. Microbiol. 1996;21:77–96. doi: 10.1046/j.1365-2958.1996.6191336.x. PubMed DOI
Swiercz J.P., Bobek J., Haiser H.J., Di Berardo C., Tjaden B., Elliot M.A. Small non-coding RNAs in Streptomyces coelicolor. Nucleic Acids Res. 2008;36:7240–7251. doi: 10.1093/nar/gkn898. PubMed DOI PMC
Setinova D., Smidova K., Pohl P., Music I., Bobek J. RNase III-binding-mRNAs revealed novel complementary transcripts in Streptomyces. Front. Microbiol. 2017;8:2693. doi: 10.3389/fmicb.2017.02693. PubMed DOI PMC
Kang S.G., Jin W., Bibb M., Lee K.J. Actinorhodin and undecylprodigiosin production in wild-type and relA mutant strains of Streptomyces coelicolor A3(2) grown in continuous culture. FEMS Microbiol. Lett. 1998;168:221–226. doi: 10.1111/j.1574-6968.1998.tb13277.x. PubMed DOI
Cihak M., Kamenik Z., Smidova K., Bergman N., Benada O., Kofronova O., Petrickova K., Bobek J. Secondary metabolites produced during the germination of Streptomyces coelicolor. Front. Microbiol. 2017;8:2495. doi: 10.3389/fmicb.2017.02495. PubMed DOI PMC
Kamenik Z., Hadacek F., Mareckova M., Ulanova D., Kopecky J., Chobot V., Plhackova K., Olsovska J. Ultra-high-performance liquid chromatography fingerprinting method for chemical screening of metabolites in cultivation broth. J. Chromatogr. A. 2010;1217:8016–8025. doi: 10.1016/j.chroma.2010.08.031. PubMed DOI
Gruber A.R., Lorenz R., Bernhart S.H., Neubock R., Hofacker I.L. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–W74. doi: 10.1093/nar/gkn188. PubMed DOI PMC
Gomez-Escribano J.P., Bibb M.J. Streptomyces coelicolor as an expression host for heterologous gene clusters. Methods Enzymol. 2012;517:279–300. PubMed
Nishiyama T., Sakemi H., Sumi H., Tokunaga S., Doi K., Ogata S. A chromosomal locus encoding a phosphoserine phosphatase- and a truncated mind-like protein affects differentiation in Streptomyces azureus ATCC14921. FEMS Microbiol. Lett. 2000;190:133–139. doi: 10.1111/j.1574-6968.2000.tb09275.x. PubMed DOI
Vockenhuber M.P., Sharma C.M., Statt M.G., Schmidt D., Xu Z., Dietrich S., Liesegang H., Mathews D.H., Suess B. Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor. RNA Biol. 2011;8:468–477. doi: 10.4161/rna.8.3.14421. PubMed DOI PMC
Mai J., Rao C., Watt J., Sun X., Lin C., Zhang L., Liu J. Mycobacterium tuberculosis 6C sRNA binds multiple mRNA targets via C-rich loops independent of RNA chaperones. Nucleic Acids Res. 2019;47:4292–4307. doi: 10.1093/nar/gkz149. PubMed DOI PMC
Swiercz J.P., Elliot M.A. McMaster University, Hamilton, ON, Canada. Unpublished work. 2009
Corre C., Song L., O’Rourke S., Chater K.F., Challis G.L. 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc. Natl. Acad. Sci. USA. 2008;105:17510–17515. doi: 10.1073/pnas.0805530105. PubMed DOI PMC
Paleckova P., Bobek J., Felsberg J., Mikulik K. Activity of translation system and abundance of tmRNA during development of Streptomyces aureofaciens producing tetracycline. Folia Microbiol. 2006;51:517–524. doi: 10.1007/BF02931615. PubMed DOI
Mikulik K., Paleckova P., Felsberg J., Bobek J., Zidkova J., Halada P. SsrA genes of streptomycetes and association of proteins to the tmRNA during development and cellular differentiation. Proteomics. 2008;8:1429–1441. PubMed
Engel F., Ossipova E., Jakobsson P.J., Vockenhuber M.P., Suess B. sRNA scr5239 involved in feedback loop regulation of Streptomyces coelicolor central metabolism. Front. Microbiol. 2019;10:3121. doi: 10.3389/fmicb.2019.03121. PubMed DOI PMC
Moody M.J., Young R.A., Jones S.E., Elliot M.A. Comparative analysis of non-coding RNAs in the antibiotic-producing Streptomyces bacteria. BMC Genomics. 2013;14:558. doi: 10.1186/1471-2164-14-558. PubMed DOI PMC
Yi J.S., Kim M.W., Kim M., Jeong Y., Kim E.J., Cho B.K., Kim B.G. A novel approach for gene expression optimization through native promoter and 5′ UTR combinations based on RNA-seq, Ribo-seq, and TSS-seq of Streptomyces coelicolor. ACS Synth. Biol. 2017;6:555–565. PubMed
Kim K.S., Lee Y. Regulation of 6S RNA biogenesis by switching utilization of both sigma factors and endoribonucleases. Nucleic Acids Res. 2004;32:6057–6068. doi: 10.1093/nar/gkh939. PubMed DOI PMC
Li Z., Zhu L., Yu Z., Liu L., Chou S.H., Wang J., He J. 6S-1 RNA contributes to sporulation and parasporal crystal formation in Bacillus thuringiensis. Front. Microbiol. 2020;11:604458. doi: 10.3389/fmicb.2020.604458. PubMed DOI PMC
Behra P.R.K., Pettersson B.M.F., Das S., Dasgupta S., Kirsebom L.A. Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA. BMC Evol. Biol. 2019;19:124. doi: 10.1186/s12862-019-1447-7. PubMed DOI PMC
Hnilicova J., Jirat Matejckova J., Sikova M., Pospisil J., Halada P., Panek J., Krasny L. Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res. 2014;42:11763–11776. doi: 10.1093/nar/gku793. PubMed DOI PMC
Sikova M., Janouskova M., Ramaniuk O., Palenikova P., Pospisil J., Bartl P., Suder A., Pajer P., Kubickova P., Pavlis O., et al. Ms1 RNA increases the amount of RNA polymerase in Mycobacterium smegmatis. Mol. Microbiol. 2019;111:354–372. PubMed
Trotochaud A.E., Wassarman K.M. 6S RNA function enhances long-term cell survival. J. Bacteriol. 2004;186:4978–4985. doi: 10.1128/JB.186.15.4978-4985.2004. PubMed DOI PMC
Wassarman K.M., Storz G. 6S RNA regulates E. coli RNA polymerase activity. Cell. 2000;101:613–623. doi: 10.1016/S0092-8674(00)80873-9. PubMed DOI
Cavanagh A.T., Klocko A.D., Liu X., Wassarman K.M. Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of sigma70. Mol. Microbiol. 2008;67:1242–1256. doi: 10.1111/j.1365-2958.2008.06117.x. PubMed DOI
Neusser T., Polen T., Geissen R., Wagner R. Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery. BMC Genomics. 2010;11:165. doi: 10.1186/1471-2164-11-165. PubMed DOI PMC
Ando Y., Asari S., Suzuma S., Yamane K., Nakamura K. Expression of a small RNA, bs203 RNA, from the yocI-yocJ intergenic region of Bacillus subtilis genome. FEMS Microbiol. Lett. 2002;207:29–33. doi: 10.1016/S0378-1097(01)00551-1. PubMed DOI
Beckmann B.M., Burenina O.Y., Hoch P.G., Kubareva E.A., Sharma C.M., Hartmann R.K. In vivo and in vitro analysis of 6S RNA-templated short transcripts in Bacillus subtilis. RNA Biol. 2011;8:839–849. doi: 10.4161/rna.8.5.16151. PubMed DOI
Suzuma S., Asari S., Bunai K., Yoshino K., Ando Y., Kakeshita H., Fujita M., Nakamura K., Yamane K. Identification and characterization of novel small RNAs in the aspS-yrvM intergenic region of the Bacillus subtilis genome. Microbiology. 2002;148:2591–2598. doi: 10.1099/00221287-148-8-2591. PubMed DOI
Cavanagh A.T., Wassarman K.M. 6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis. J. Bacteriol. 2013;195:2079–2086. doi: 10.1128/JB.00050-13. PubMed DOI PMC
Warrier I., Hicks L.D., Battisti J.M., Raghavan R., Minnick M.F. Identification of novel small RNAs and characterization of the 6S RNA of Coxiella burnetii. PLoS ONE. 2014;9:e100147. PubMed PMC
Yague P., Rodriguez-Garcia A., Lopez-Garcia M.T., Rioseras B., Martin J.F., Sanchez J., Manteca A. Transcriptomic analysis of liquid non-sporulating Streptomyces coelicolor cultures demonstrates the existence of a complex differentiation comparable to that occurring in solid sporulating cultures. PLoS ONE. 2014;9:e86296. doi: 10.1371/journal.pone.0086296. PubMed DOI PMC
Bibb M.J., Molle V., Buttner M.J. Sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2) J. Bacteriol. 2000;182:4606–4616. doi: 10.1128/JB.182.16.4606-4616.2000. PubMed DOI PMC
Mendez C., Chater K.F. Cloning of whiG, a gene critical for sporulation of Streptomyces coelicolor A3(2) J. Bacteriol. 1987;169:5715–5720. doi: 10.1128/jb.169.12.5715-5720.1987. PubMed DOI PMC
Flardh K., Findlay K.C., Chater K.F. Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2) Pt 9Microbiology. 1999;145:2229–2243. doi: 10.1099/00221287-145-9-2229. PubMed DOI
Chater K.F. Multilevel regulation of Streptomyces differentiation. Trends Genet. 1989;5:372–377. doi: 10.1016/0168-9525(89)90172-8. PubMed DOI
Ryding N.J., Kelemen G.H., Whatling C.A., Flardh K., Buttner M.J., Chater K.F. A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2) Mol. Microbiol. 1998;29:343–357. doi: 10.1046/j.1365-2958.1998.00939.x. PubMed DOI
Becher P.G., Verschut V., Bibb M.J., Bush M.J., Molnar B.P., Barane E., Al-Bassam M.M., Chandra G., Song L., Challis G.L., et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat. Microbiol. 2020;5:821–829. doi: 10.1038/s41564-020-0697-x. PubMed DOI
Guijarro J., Santamaria R., Schauer A., Losick R. Promoter determining the timing and spatial localization of transcription of a cloned Streptomyces coelicolor gene encoding a spore-associated polypeptide. J. Bacteriol. 1988;170:1895–1901. doi: 10.1128/jb.170.4.1895-1901.1988. PubMed DOI PMC
Willey J., Santamaria R., Guijarro J., Geistlich M., Losick R. Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. Cell. 1991;65:641–650. doi: 10.1016/0092-8674(91)90096-H. PubMed DOI
Khokhlov A.S., Tovarova I.I., Borisova L.N., Pliner S.A., Shevchenko L.N., Kornitskaia E., Ivkina N.S., Rapoport I.A. [The a-factor, responsible for streptomycin biosynthesis by mutant strains of actinomyces streptomycini] Dokl. Akad. Nauk. SSSR. 1967;177:232–235. PubMed
Takano E. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 2006;9:287–294. doi: 10.1016/j.mib.2006.04.003. PubMed DOI
Kato J.Y., Funa N., Watanabe H., Ohnishi Y., Horinouchi S. Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc. Natl. Acad. Sci. USA. 2007;104:2378–2383. doi: 10.1073/pnas.0607472104. PubMed DOI PMC
Hindra , Pak P., Elliot M.A. Regulation of a novel gene cluster involved in secondary metabolite production in Streptomyces coelicolor. J. Bacteriol. 2010;192:4973–4982. doi: 10.1128/JB.00681-10. PubMed DOI PMC
Park U.M., Suh J.W., Hong S.K. Genetic analysis of absR, a new abs locus of Streptomyces coelicolor. J. Microbiol. Biotechnol. 2000;10:169–175.
Tenconi E., Traxler M.F., Hoebreck C., van Wezel G.P., Rigali S. Production of prodiginines is part of a programmed cell death process in Streptomyces coelicolor. Front. Microbiol. 2018;9:1742. doi: 10.3389/fmicb.2018.01742. PubMed DOI PMC
Takano H., Obitsu S., Beppu T., Ueda K. Light-induced carotenogenesis in Streptomyces coelicolor A3(2): Identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J. Bacteriol. 2005;187:1825–1832. doi: 10.1128/JB.187.5.1825-1832.2005. PubMed DOI PMC
Song L., Barona-Gomez F., Corre C., Xiang L., Udwary D.W., Austin M.B., Noel J.P., Moore B.S., Challis G.L. Type III polyketide synthase beta-ketoacyl-acp starter unit and ethylmalonyl-coa extender unit selectivity discovered by Streptomyces coelicolor genome mining. J. Am. Chem. Soc. 2006;128:14754–14755. doi: 10.1021/ja065247w. PubMed DOI PMC
Aoki Y., Matsumoto D., Kawaide H., Natsume M. Physiological role of germicidins in spore germination and hyphal elongation in Streptomyces coelicolor A3(2) J. Antibiot. 2011;64:607–611. doi: 10.1038/ja.2011.59. PubMed DOI
RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria