6S-Like scr3559 RNA Affects Development and Antibiotic Production in Streptomyces coelicolor

. 2021 Sep 22 ; 9 (10) : . [epub] 20210922

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34683325

Grantová podpora
UJEP-SGS-2020-53-002-2 Jan Evangelista Purkyně University in Ústí nad Labem
PROGRES Q25/LF1 Charles University
SVV260520 Charles University
04681 Natural Sciences and Engineering Research Council

Odkazy

PubMed 34683325
PubMed Central PMC8539372
DOI 10.3390/microorganisms9102004
PII: microorganisms9102004
Knihovny.cz E-zdroje

Regulatory RNAs control a number of physiological processes in bacterial cells. Here we report on a 6S-like RNA transcript (scr3559) that affects both development and antibiotic production in Streptomyces coelicolor. Its expression is enhanced during the transition to stationary phase. Strains that over-expressed the scr3559 gene region exhibited a shortened exponential growth phase in comparison with a control strain; accelerated aerial mycelium formation and spore maturation; alongside an elevated production of actinorhodin and undecylprodigiosin. These observations were supported by LC-MS analyses of other produced metabolites, including: germicidins, desferrioxamines, and coelimycin. A subsequent microarray differential analysis revealed increased expression of genes associated with the described morphological and physiological changes. Structural and functional similarities between the scr3559 transcript and 6S RNA, and its possible employment in regulating secondary metabolite production are discussed.

Zobrazit více v PubMed

Kelemen G.H., Buttner M.J. Initiation of aerial mycelium formation in Streptomyces. Curr. Opin. Microbiol. 1998;1:656–662. doi: 10.1016/S1369-5274(98)80111-2. PubMed DOI

Flardh K., Buttner M.J. Streptomyces morphogenetics: Dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 2009;7:36–49. doi: 10.1038/nrmicro1968. PubMed DOI

Flardh K., Richards D.M., Hempel A.M., Howard M., Buttner M.J. Regulation of apical growth and hyphal branching in Streptomyces. Curr. Opin. Microbiol. 2012;15:737–743. doi: 10.1016/j.mib.2012.10.012. PubMed DOI

Bobek J., Strakova E., Zikova A., Vohradsky J. Changes in activity of metabolic and regulatory pathways during germination of S. coelicolor. BMC Genomics. 2014;15:1173. doi: 10.1186/1471-2164-15-1173. PubMed DOI PMC

McCormick J.R., Flardh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol. Rev. 2012;36:206–231. doi: 10.1111/j.1574-6976.2011.00317.x. PubMed DOI PMC

Hopwood D.A. Forty years of genetics with Streptomyces: From in vivo through in vitro to in silico. Pt 9Microbiology. 1999;145:2183–2202. doi: 10.1099/00221287-145-9-2183. PubMed DOI

Claessen D., de Jong W., Dijkhuizen L., Wosten H.A. Regulation of Streptomyces development: Reach for the sky! Trends Microbiol. 2006;14:313–319. doi: 10.1016/j.tim.2006.05.008. PubMed DOI

Majdalani N., Vanderpool C.K., Gottesman S. Bacterial small RNA regulators. Crit. Rev. Biochem. Mol. Biol. 2005;40:93–113. doi: 10.1080/10409230590918702. PubMed DOI

Wassarman K.M. 6S RNA, a global regulator of transcription. Microbiol. Spectr. 2018;6:355–367. doi: 10.1128/microbiolspec.RWR-0019-2018. PubMed DOI PMC

Gildehaus N., Neusser T., Wurm R., Wagner R. Studies on the function of the riboregulator 6S RNA from E. coli: RNA polymerase binding, inhibition of in vitro transcription and synthesis of RNA-directed de novo transcripts. Nucleic Acids Res. 2007;35:1885–1896. doi: 10.1093/nar/gkm085. PubMed DOI PMC

Wassarman K.M., Saecker R.M. Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science. 2006;314:1601–1603. doi: 10.1126/science.1134830. PubMed DOI

Willkomm D.K., Minnerup J., Huttenhofer A., Hartmann R.K. Experimental rnomics in aquifex aeolicus: Identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res. 2005;33:1949–1960. doi: 10.1093/nar/gki334. PubMed DOI PMC

Barrick J.E., Sudarsan N., Weinberg Z., Ruzzo W.L., Breaker R.R. 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA. 2005;11:774–784. doi: 10.1261/rna.7286705. PubMed DOI PMC

Panek J., Bobek J., Mikulik K., Basler M., Vohradsky J. Biocomputational prediction of small non-coding RNAs in Streptomyces. BMC Genomics. 2008;9:217. doi: 10.1186/1471-2164-9-217. PubMed DOI PMC

Panek J., Krasny L., Bobek J., Jezkova E., Korelusova J., Vohradsky J. The suboptimal structures find the optimal RNAs: Homology search for bacterial non-coding RNAs using suboptimal RNA structures. Nucleic Acids Res. 2011;39:3418–3426. doi: 10.1093/nar/gkq1186. PubMed DOI PMC

Mikulik K., Bobek J., Zidkova J., Felsberg J. 6S RNA modulates growth and antibiotic production in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 2014;98:7185–7197. doi: 10.1007/s00253-014-5806-4. PubMed DOI

Sambrook J.R., Russell D.W. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY, USA: 2001. p. A2.2.

Kieser T., Bibb M.J., Buttner M.J., Chater K.F., Hopwood D.A. Practical Streptomyces Genetics. 2nd ed. John Innes Foundation; Norwich, UK: 2000.

Shima J., Hesketh A., Okamoto S., Kawamoto S., Ochi K. Induction of actinorhodin production by rpsl (encoding ribosomal protein s12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2) J. Bacteriol. 1996;178:7276–7284. doi: 10.1128/jb.178.24.7276-7284.1996. PubMed DOI PMC

MacNeil D.J., Occi J.L., Gewain K.M., MacNeil T., Gibbons P.H., Ruby C.L., Danis S.J. Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene. 1992;115:119–125. doi: 10.1016/0378-1119(92)90549-5. PubMed DOI

Janssen G.R., Bibb M.J. Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene. 1993;124:133–134. doi: 10.1016/0378-1119(93)90774-W. PubMed DOI

Wilkinson C.J., Hughes-Thomas Z.A., Martin C.J., Bohm I., Mironenko T., Deacon M., Wheatcroft M., Wirtz G., Staunton J., Leadlay P.F. Increasing the efficiency of heterologous promoters in actinomycetes. J. Mol. Microbiol. Biotechnol. 2002;4:417–426. PubMed

Redenbach M., Kieser H.M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D.A. A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol. Microbiol. 1996;21:77–96. doi: 10.1046/j.1365-2958.1996.6191336.x. PubMed DOI

Swiercz J.P., Bobek J., Haiser H.J., Di Berardo C., Tjaden B., Elliot M.A. Small non-coding RNAs in Streptomyces coelicolor. Nucleic Acids Res. 2008;36:7240–7251. doi: 10.1093/nar/gkn898. PubMed DOI PMC

Setinova D., Smidova K., Pohl P., Music I., Bobek J. RNase III-binding-mRNAs revealed novel complementary transcripts in Streptomyces. Front. Microbiol. 2017;8:2693. doi: 10.3389/fmicb.2017.02693. PubMed DOI PMC

Kang S.G., Jin W., Bibb M., Lee K.J. Actinorhodin and undecylprodigiosin production in wild-type and relA mutant strains of Streptomyces coelicolor A3(2) grown in continuous culture. FEMS Microbiol. Lett. 1998;168:221–226. doi: 10.1111/j.1574-6968.1998.tb13277.x. PubMed DOI

Cihak M., Kamenik Z., Smidova K., Bergman N., Benada O., Kofronova O., Petrickova K., Bobek J. Secondary metabolites produced during the germination of Streptomyces coelicolor. Front. Microbiol. 2017;8:2495. doi: 10.3389/fmicb.2017.02495. PubMed DOI PMC

Kamenik Z., Hadacek F., Mareckova M., Ulanova D., Kopecky J., Chobot V., Plhackova K., Olsovska J. Ultra-high-performance liquid chromatography fingerprinting method for chemical screening of metabolites in cultivation broth. J. Chromatogr. A. 2010;1217:8016–8025. doi: 10.1016/j.chroma.2010.08.031. PubMed DOI

Gruber A.R., Lorenz R., Bernhart S.H., Neubock R., Hofacker I.L. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–W74. doi: 10.1093/nar/gkn188. PubMed DOI PMC

Gomez-Escribano J.P., Bibb M.J. Streptomyces coelicolor as an expression host for heterologous gene clusters. Methods Enzymol. 2012;517:279–300. PubMed

Nishiyama T., Sakemi H., Sumi H., Tokunaga S., Doi K., Ogata S. A chromosomal locus encoding a phosphoserine phosphatase- and a truncated mind-like protein affects differentiation in Streptomyces azureus ATCC14921. FEMS Microbiol. Lett. 2000;190:133–139. doi: 10.1111/j.1574-6968.2000.tb09275.x. PubMed DOI

Vockenhuber M.P., Sharma C.M., Statt M.G., Schmidt D., Xu Z., Dietrich S., Liesegang H., Mathews D.H., Suess B. Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor. RNA Biol. 2011;8:468–477. doi: 10.4161/rna.8.3.14421. PubMed DOI PMC

Mai J., Rao C., Watt J., Sun X., Lin C., Zhang L., Liu J. Mycobacterium tuberculosis 6C sRNA binds multiple mRNA targets via C-rich loops independent of RNA chaperones. Nucleic Acids Res. 2019;47:4292–4307. doi: 10.1093/nar/gkz149. PubMed DOI PMC

Swiercz J.P., Elliot M.A. McMaster University, Hamilton, ON, Canada. Unpublished work. 2009

Corre C., Song L., O’Rourke S., Chater K.F., Challis G.L. 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc. Natl. Acad. Sci. USA. 2008;105:17510–17515. doi: 10.1073/pnas.0805530105. PubMed DOI PMC

Paleckova P., Bobek J., Felsberg J., Mikulik K. Activity of translation system and abundance of tmRNA during development of Streptomyces aureofaciens producing tetracycline. Folia Microbiol. 2006;51:517–524. doi: 10.1007/BF02931615. PubMed DOI

Mikulik K., Paleckova P., Felsberg J., Bobek J., Zidkova J., Halada P. SsrA genes of streptomycetes and association of proteins to the tmRNA during development and cellular differentiation. Proteomics. 2008;8:1429–1441. PubMed

Engel F., Ossipova E., Jakobsson P.J., Vockenhuber M.P., Suess B. sRNA scr5239 involved in feedback loop regulation of Streptomyces coelicolor central metabolism. Front. Microbiol. 2019;10:3121. doi: 10.3389/fmicb.2019.03121. PubMed DOI PMC

Moody M.J., Young R.A., Jones S.E., Elliot M.A. Comparative analysis of non-coding RNAs in the antibiotic-producing Streptomyces bacteria. BMC Genomics. 2013;14:558. doi: 10.1186/1471-2164-14-558. PubMed DOI PMC

Yi J.S., Kim M.W., Kim M., Jeong Y., Kim E.J., Cho B.K., Kim B.G. A novel approach for gene expression optimization through native promoter and 5′ UTR combinations based on RNA-seq, Ribo-seq, and TSS-seq of Streptomyces coelicolor. ACS Synth. Biol. 2017;6:555–565. PubMed

Kim K.S., Lee Y. Regulation of 6S RNA biogenesis by switching utilization of both sigma factors and endoribonucleases. Nucleic Acids Res. 2004;32:6057–6068. doi: 10.1093/nar/gkh939. PubMed DOI PMC

Li Z., Zhu L., Yu Z., Liu L., Chou S.H., Wang J., He J. 6S-1 RNA contributes to sporulation and parasporal crystal formation in Bacillus thuringiensis. Front. Microbiol. 2020;11:604458. doi: 10.3389/fmicb.2020.604458. PubMed DOI PMC

Behra P.R.K., Pettersson B.M.F., Das S., Dasgupta S., Kirsebom L.A. Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA. BMC Evol. Biol. 2019;19:124. doi: 10.1186/s12862-019-1447-7. PubMed DOI PMC

Hnilicova J., Jirat Matejckova J., Sikova M., Pospisil J., Halada P., Panek J., Krasny L. Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res. 2014;42:11763–11776. doi: 10.1093/nar/gku793. PubMed DOI PMC

Sikova M., Janouskova M., Ramaniuk O., Palenikova P., Pospisil J., Bartl P., Suder A., Pajer P., Kubickova P., Pavlis O., et al. Ms1 RNA increases the amount of RNA polymerase in Mycobacterium smegmatis. Mol. Microbiol. 2019;111:354–372. PubMed

Trotochaud A.E., Wassarman K.M. 6S RNA function enhances long-term cell survival. J. Bacteriol. 2004;186:4978–4985. doi: 10.1128/JB.186.15.4978-4985.2004. PubMed DOI PMC

Wassarman K.M., Storz G. 6S RNA regulates E. coli RNA polymerase activity. Cell. 2000;101:613–623. doi: 10.1016/S0092-8674(00)80873-9. PubMed DOI

Cavanagh A.T., Klocko A.D., Liu X., Wassarman K.M. Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of sigma70. Mol. Microbiol. 2008;67:1242–1256. doi: 10.1111/j.1365-2958.2008.06117.x. PubMed DOI

Neusser T., Polen T., Geissen R., Wagner R. Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery. BMC Genomics. 2010;11:165. doi: 10.1186/1471-2164-11-165. PubMed DOI PMC

Ando Y., Asari S., Suzuma S., Yamane K., Nakamura K. Expression of a small RNA, bs203 RNA, from the yocI-yocJ intergenic region of Bacillus subtilis genome. FEMS Microbiol. Lett. 2002;207:29–33. doi: 10.1016/S0378-1097(01)00551-1. PubMed DOI

Beckmann B.M., Burenina O.Y., Hoch P.G., Kubareva E.A., Sharma C.M., Hartmann R.K. In vivo and in vitro analysis of 6S RNA-templated short transcripts in Bacillus subtilis. RNA Biol. 2011;8:839–849. doi: 10.4161/rna.8.5.16151. PubMed DOI

Suzuma S., Asari S., Bunai K., Yoshino K., Ando Y., Kakeshita H., Fujita M., Nakamura K., Yamane K. Identification and characterization of novel small RNAs in the aspS-yrvM intergenic region of the Bacillus subtilis genome. Microbiology. 2002;148:2591–2598. doi: 10.1099/00221287-148-8-2591. PubMed DOI

Cavanagh A.T., Wassarman K.M. 6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis. J. Bacteriol. 2013;195:2079–2086. doi: 10.1128/JB.00050-13. PubMed DOI PMC

Warrier I., Hicks L.D., Battisti J.M., Raghavan R., Minnick M.F. Identification of novel small RNAs and characterization of the 6S RNA of Coxiella burnetii. PLoS ONE. 2014;9:e100147. PubMed PMC

Yague P., Rodriguez-Garcia A., Lopez-Garcia M.T., Rioseras B., Martin J.F., Sanchez J., Manteca A. Transcriptomic analysis of liquid non-sporulating Streptomyces coelicolor cultures demonstrates the existence of a complex differentiation comparable to that occurring in solid sporulating cultures. PLoS ONE. 2014;9:e86296. doi: 10.1371/journal.pone.0086296. PubMed DOI PMC

Bibb M.J., Molle V., Buttner M.J. Sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2) J. Bacteriol. 2000;182:4606–4616. doi: 10.1128/JB.182.16.4606-4616.2000. PubMed DOI PMC

Mendez C., Chater K.F. Cloning of whiG, a gene critical for sporulation of Streptomyces coelicolor A3(2) J. Bacteriol. 1987;169:5715–5720. doi: 10.1128/jb.169.12.5715-5720.1987. PubMed DOI PMC

Flardh K., Findlay K.C., Chater K.F. Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2) Pt 9Microbiology. 1999;145:2229–2243. doi: 10.1099/00221287-145-9-2229. PubMed DOI

Chater K.F. Multilevel regulation of Streptomyces differentiation. Trends Genet. 1989;5:372–377. doi: 10.1016/0168-9525(89)90172-8. PubMed DOI

Ryding N.J., Kelemen G.H., Whatling C.A., Flardh K., Buttner M.J., Chater K.F. A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2) Mol. Microbiol. 1998;29:343–357. doi: 10.1046/j.1365-2958.1998.00939.x. PubMed DOI

Becher P.G., Verschut V., Bibb M.J., Bush M.J., Molnar B.P., Barane E., Al-Bassam M.M., Chandra G., Song L., Challis G.L., et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat. Microbiol. 2020;5:821–829. doi: 10.1038/s41564-020-0697-x. PubMed DOI

Guijarro J., Santamaria R., Schauer A., Losick R. Promoter determining the timing and spatial localization of transcription of a cloned Streptomyces coelicolor gene encoding a spore-associated polypeptide. J. Bacteriol. 1988;170:1895–1901. doi: 10.1128/jb.170.4.1895-1901.1988. PubMed DOI PMC

Willey J., Santamaria R., Guijarro J., Geistlich M., Losick R. Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. Cell. 1991;65:641–650. doi: 10.1016/0092-8674(91)90096-H. PubMed DOI

Khokhlov A.S., Tovarova I.I., Borisova L.N., Pliner S.A., Shevchenko L.N., Kornitskaia E., Ivkina N.S., Rapoport I.A. [The a-factor, responsible for streptomycin biosynthesis by mutant strains of actinomyces streptomycini] Dokl. Akad. Nauk. SSSR. 1967;177:232–235. PubMed

Takano E. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 2006;9:287–294. doi: 10.1016/j.mib.2006.04.003. PubMed DOI

Kato J.Y., Funa N., Watanabe H., Ohnishi Y., Horinouchi S. Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc. Natl. Acad. Sci. USA. 2007;104:2378–2383. doi: 10.1073/pnas.0607472104. PubMed DOI PMC

Hindra , Pak P., Elliot M.A. Regulation of a novel gene cluster involved in secondary metabolite production in Streptomyces coelicolor. J. Bacteriol. 2010;192:4973–4982. doi: 10.1128/JB.00681-10. PubMed DOI PMC

Park U.M., Suh J.W., Hong S.K. Genetic analysis of absR, a new abs locus of Streptomyces coelicolor. J. Microbiol. Biotechnol. 2000;10:169–175.

Tenconi E., Traxler M.F., Hoebreck C., van Wezel G.P., Rigali S. Production of prodiginines is part of a programmed cell death process in Streptomyces coelicolor. Front. Microbiol. 2018;9:1742. doi: 10.3389/fmicb.2018.01742. PubMed DOI PMC

Takano H., Obitsu S., Beppu T., Ueda K. Light-induced carotenogenesis in Streptomyces coelicolor A3(2): Identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J. Bacteriol. 2005;187:1825–1832. doi: 10.1128/JB.187.5.1825-1832.2005. PubMed DOI PMC

Song L., Barona-Gomez F., Corre C., Xiang L., Udwary D.W., Austin M.B., Noel J.P., Moore B.S., Challis G.L. Type III polyketide synthase beta-ketoacyl-acp starter unit and ethylmalonyl-coa extender unit selectivity discovered by Streptomyces coelicolor genome mining. J. Am. Chem. Soc. 2006;128:14754–14755. doi: 10.1021/ja065247w. PubMed DOI PMC

Aoki Y., Matsumoto D., Kawaide H., Natsume M. Physiological role of germicidins in spore germination and hyphal elongation in Streptomyces coelicolor A3(2) J. Antibiot. 2011;64:607–611. doi: 10.1038/ja.2011.59. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...