Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25217589
PubMed Central
PMC4191392
DOI
10.1093/nar/gku793
PII: gku793
Knihovny.cz E-resources
- MeSH
- Chromosomes, Bacterial MeSH
- DNA-Directed RNA Polymerases metabolism MeSH
- Nucleic Acid Conformation MeSH
- RNA, Small Untranslated chemistry genetics metabolism MeSH
- Mycobacterium smegmatis enzymology genetics growth & development MeSH
- Mycobacterium genetics MeSH
- Sigma Factor metabolism MeSH
- Synteny MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA-Directed RNA Polymerases MeSH
- RNA, Small Untranslated MeSH
- Sigma Factor MeSH
Small RNAs (sRNAs) are molecules essential for a number of regulatory processes in the bacterial cell. Here we characterize Ms1, a sRNA that is highly expressed in Mycobacterium smegmatis during stationary phase of growth. By glycerol gradient ultracentrifugation, RNA binding assay, and RNA co-immunoprecipitation, we show that Ms1 interacts with the RNA polymerase (RNAP) core that is free of the primary sigma factor (σA) or any other σ factor. This contrasts with the situation in most other species where it is 6S RNA that interacts with RNAP and this interaction requires the presence of σA. The difference in the interaction of the two types of sRNAs (Ms1 or 6S RNA) with RNAP possibly reflects the difference in the composition of the transcriptional machinery between mycobacteria and other species. Unlike Escherichia coli, stationary phase M. smegmatis cells contain relatively few RNAP molecules in complex with σA. Thus, Ms1 represents a novel type of small RNAs interacting with RNAP.
See more in PubMed
Stewart G.R., Robertson B.D., Young D.B. Tuberculosis: a problem with persistence. Nat. Rev. Microbiol. 2003;1:97–105. PubMed
Waagmeester A., Thompson J., Reyrat J.M. Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis. Trends Microbiol. 2005;13:505–509. PubMed
Sharma U.K., Chatterji D. Transcriptional switching in Escherichia coli during stress and starvation by modulation of sigma activity. FEMS Microbiol. Rev. 2010;34:646–657. PubMed
Paget M.S., Helmann J.D. The sigma70 family of sigma factors. Genome Biol. 2003;4:203.1–203.4. PubMed PMC
Österberg S., del Peso-Santos T., Shingler V. Regulation of alternative sigma factor use. Annu. Rev. Microbiol. 2011;65:37–55. PubMed
Storz G., Vogel J., Wassarman K.M. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell. 2011;43:880–891. PubMed PMC
Raghavan R., Groisman E.A., Ochman H. Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res. 2011;21:1487–1497. PubMed PMC
Arnvig K.B., Comas I., Thomson N.R., Houghton J., Boshoff H.I., Croucher N.J., Rose G., Perkins T.T., Parkhill J., Dougan G., et al. Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of Mycobacterium tuberculosis. PLoS Pathog. 2011;7:e1002342. PubMed PMC
Arnvig K.B., Young D.B. Identification of small RNAs in Mycobacterium tuberculosis. Mol. Microbiol. 2009;73:397–408. PubMed PMC
DiChiara J.M., Contreras-Martinez L.M., Livny J., Smith D., McDonough K.A., Belfort M. Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis. Nucleic Acids Res. 2010;38:4067–4078. PubMed PMC
Miotto P., Forti F., Ambrosi A., Pellin D., Veiga D.F., Balazsi G., Gennaro M.L., Di Serio C., Ghisotti D., Cirillo D.M. Genome-wide discovery of small RNAs in Mycobacterium tuberculosis. PLoS One. 2012;7:e51950. PubMed PMC
Pelly S., Bishai W.R., Lamichhane G. A screen for non-coding RNA in Mycobacterium tuberculosis reveals a cAMP-responsive RNA that is expressed during infection. Gene. 2012;500:85–92. PubMed PMC
Trotochaud A.E., Wassarman K.M. A highly conserved 6S RNA structure is required for regulation of transcription. Nat. Struct. Mol. Biol. 2005;12:313–319. PubMed
Li S.K., Ng P.K., Qin H., Lau J.K., Lau J.P., Tsui S.K., Chan T.F., Lau T.C. Identification of small RNAs in Mycobacterium smegmatis using heterologous Hfq. RNA. 2013;19:74–84. PubMed PMC
Arnvig K., Young D. Non-coding RNA and its potential role in Mycobacterium tuberculosis pathogenesis. RNA Biol. 2012;9:427–436. PubMed PMC
Lamichhane G., Arnvig K.B., McDonough K.A. Definition and annotation of (myco)bacterial non-coding RNA. Tuberculosis (Edinb) 2013;93:26–29. PubMed
Pánek J., Krásny L., Bobek J., Jezková E., Korelusová J., Vohradsky J. The suboptimal structures find the optimal RNAs: homology search for bacterial non-coding RNAs using suboptimal RNA structures. Nucleic Acids Res. 2011;39:3418–3426. PubMed PMC
Shephard L., Dobson N., Unrau P.J. Binding and release of the 6S transcriptional control RNA. RNA. 2010;16:885–892. PubMed PMC
Steuten B., Setny P., Zacharias M., Wagner R. Mapping the spatial neighborhood of the regulatory 6S RNA bound to Escherichia coli RNA polymerase holoenzyme. J. Mol. Biol. 2013;425:3649–3661. PubMed
Barrick J.E., Sudarsan N., Weinberg Z., Ruzzo W.L., Breaker R.R. 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA. 2005;11:774–784. PubMed PMC
Wassarman K.M., Storz G. 6S RNA regulates E. coli RNA polymerase activity. Cell. 2000;101:613–623. PubMed
Wassarman K.M. 6S RNA: a small RNA regulator of transcription. Curr. Opin. Microbiol. 2007;10:164–168. PubMed
Steuten B., Hoch P.G., Damm K., Schneider S., Köhler K., Wagner R., Hartmann R.K. Regulation of transcription by 6S RNAs: Insights from the Escherichia coli and Bacillus subtilis model systems. RNA Biol. 2014;11:508–521. PubMed PMC
Cavanagh A.T., Wassarman K.M. 6S RNA, A Global Regulator of Transcription in Escherichia coli, Bacillus subtilis, and Beyond. Annu. Rev. Microbiol. 2014;68 PubMed
Burge S.W., Daub J., Eberhardt R., Tate J., Barquist L., Nawrocki E.P., Eddy S.R., Gardner P.P., Bateman A. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2013;41:D226–D232. PubMed PMC
Rediger A., Geissen R., Steuten B., Heilmann B., Wagner R., Axmann I.M. 6S RNA—an old issue became blue-green. Microbiology. 2012;158:2480–2491. PubMed
Faucher S.P., Friedlander G., Livny J., Margalit H., Shuman H.A. Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc. Natl. Acad. Sci. U.S.A. 2010;107:7533–7538. PubMed PMC
Sharma C.M., Hoffmann S., Darfeuille F., Reignier J., Findeiss S., Sittka A., Chabas S., Reiche K., Hackermüller J., Reinhardt R., et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature. 2010;464:250–255. PubMed
Kim J.H., Wei J.R., Wallach J.B., Robbins R.S., Rubin E.J., Schnappinger D. Protein inactivation in mycobacteria by controlled proteolysis and its application to deplete the beta subunit of RNA polymerase. Nucleic Acids Res. 2011;39:2210–2220. PubMed PMC
Trotochaud A.E., Wassarman K.M. 6S RNA function enhances long-term cell survival. J. Bacteriol. 2004;186:4978–4985. PubMed PMC
China A., Nagaraja V. Purification of RNA polymerase from mycobacteria for optimized promoter-polymerase interactions. Protein Expr. Purif. 2010;69:235–242. PubMed
Triccas J.A., Parish T., Britton W.J., Gicquel B. An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol. Lett. 1998;167:151–156. PubMed
Arnvig K.B., Gopal B., Papavinasasundaram K.G., Cox R.A., Colston M.J. The mechanism of upstream activation in the rrnB operon of Mycobacterium smegmatis is different from the Escherichia coli paradigm. Microbiology. 2005;151:467–473. PubMed
Krásný L., Gourse R.L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 2004;23:4473–4483. PubMed PMC
Ignatov D., Malakho S., Majorov K., Skvortsov T., Apt A., Azhikina T. RNA-Seq analysis of Mycobacterium avium non-coding transcriptome. PLoS One. 2013;8:e74209. PubMed PMC
Newton-Foot M., Gey van Pittius N.C. The complex architecture of mycobacterial promoters. Tuberculosis (Edinb) 2013;93:60–74. PubMed
Kingsford C.L., Ayanbule K., Salzberg S.L. Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol. 2007;8:R22.1–R22.8. PubMed PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed
Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. PubMed PMC
Hofacker I.L. RNA secondary structure analysis using the Vienna RNA package. 2004. Chapter 12, Unit 12.12. PubMed
Stalder E.S., Nagy L.H., Batalla P., Arthur T.M., Thompson N.E., Burgess R.R. The epitope for the polyol-responsive monoclonal antibody 8RB13 is in the flap-domain of the beta-subunit of bacterial RNA polymerase and can be used as an epitope tag for immunoaffinity chromatography. Protein Expr. Purif. 2011;77:26–33. PubMed PMC
Thompson N.E., Foley K.M., Stalder E.S., Burgess R.R. Identification, production, and use of polyol-responsive monoclonal antibodies for immunoaffinity chromatography. Methods Enzymol. 2009;463:475–494. PubMed
Werner F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J. Mol. Biol. 2012;417:13–27. PubMed PMC
Cosgriff S., Chintakayala K., Chim Y.T., Chen X., Allen S., Lovering A.L., Grainger D.C. Dimerization and DNA-dependent aggregation of the Escherichia coli nucleoid protein and chaperone CbpA. Mol. Microbiol. 2010;77:1289–1300. PubMed PMC
Epshtein V., Dutta D., Wade J., Nudler E. An allosteric mechanism of Rho-dependent transcription termination. Nature. 2010;463:245–249. PubMed PMC
Unciuleac M.C., Shuman S. Distinctive effects of domain deletions on the manganese-dependent DNA polymerase and DNA phosphorylase activities of Mycobacterium smegmatis polynucleotide phosphorylase. Biochemistry. 2013;52:2967–2981. PubMed PMC
Jones G.H., Mackie G.A. Streptomyces coelicolor polynucleotide phosphorylase can polymerize nucleoside diphosphates under phosphorolysis conditions, with implications for the degradation of structured RNAs. J. Bacteriol. 2013;195:5151–5159. PubMed PMC
Pelchat M., Grenier C., Perreault J.P. Characterization of a viroid-derived RNA promoter for the DNA-dependent RNA polymerase from Escherichia coli. Biochemistry. 2002;41:6561–6571. PubMed
Fredrick K., Helmann J.D. RNA polymerase sigma factor determines start-site selection but is not required for upstream promoter element activation on heteroduplex (bubble) templates. Proc. Natl. Acad. Sci. U.S.A. 1997;94:4982–4987. PubMed PMC
Komissarova N., Kireeva M.L., Becker J., Sidorenkov I., Kashlev M. Engineering of elongation complexes of bacterial and yeast RNA polymerases. Methods Enzymol. 2003;371:233–251. PubMed
Smollett K.L., Smith K.M., Kahramanoglou C., Arnvig K.B., Buxton R.S., Davis E.O. Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J. Biol. Chem. 2012;287:22004–22014. PubMed PMC
Nilsson M., Birnbaum S., Wahlund K.G. Determination of relative amounts of ribosome and subunits in Escherichia coli using asymmetrical flow field-flow fractionation. J. Biochem. Biophys. Methods. 1996;33:9–23. PubMed
Bremer H., Dennis P.P. Modulation of chemical composition and other parameters of the cell by growth rate. 2nd edn. Washington, D.C: ASM Press; 1996.
Liveris D., Klotsky R.A., Schwartz I. Growth rate regulation of translation initiation factor IF3 biosynthesis in Escherichia coli. J. Bacteriol. 1991;173:3888–3893. PubMed PMC
Bakshi S., Siryaporn A., Goulian M., Weisshaar J.C. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 2012;85:21–38. PubMed PMC
Vendeville A., Larivière D., Fourmentin E. An inventory of the bacterial macromolecular components and their spatial organization. FEMS Microbiol. Rev. 2011;35:395–414. PubMed
Bercovier H., Kafri O., Sela S. Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem. Biophys. Res. Commun. 1986;136:1136–1141. PubMed
Bercovier H., Kafri O., Kornitzer D., Sela S. Cloning and restriction analysis of ribosomal RNA genes from Mycobacterium smegmatis. FEMS Microbiol. Lett. 1989;48:125–128. PubMed
Cox R.A., Garcia M.J. Adaptation of mycobacteria to growth conditions: a theoretical analysis of changes in gene expression revealed by microarrays. PLoS One. 2013;8:e59883. PubMed PMC
Maass S., Sievers S., Zühlke D., Kuzinski J., Sappa P.K., Muntel J., Hessling B., Bernhardt J., Sietmann R., Völker U., et al. Efficient, global-scale quantification of absolute protein amounts by integration of targeted mass spectrometry and two-dimensional gel-based proteomics. Anal Chem. 2011;83:2677–2684. PubMed
Muntel J., Fromion V., Goelzer A., Maaβ S., Mäder U., Büttner K., Hecker M., Becher D. Comprehensive absolute quantification of the cytosolic proteome of Bacillus subtilis by data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MSE) Mol. Cell. Proteomics. 2014;13:1008–1019. PubMed PMC
Ishihama Y., Schmidt T., Rappsilber J., Mann M., Hartl F.U., Kerner M.J., Frishman D. Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics. 2008;9:102. PubMed PMC
Shepherd N., Dennis P., Bremer H. Cytoplasmic RNA polymerase in Escherichia coli. J. Bacteriol. 2001;183:2527–2534. PubMed PMC
Gengenbacher M., Kaufmann S.H. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev. 2012;36:514–532. PubMed PMC
Watanabe T., Sugiura M., Sugita M. A novel small stable RNA, 6Sa RNA, from the cyanobacterium Synechococcus sp. strain PCC6301. FEBS Lett. 1997;416:302–306. PubMed
Steuten B., Schneider S., Wagner R. 6S RNA: recent answers-future questions. Mol. Microbiol. 2014;91:641–648. PubMed
Mentz A., Neshat A., Pfeifer-Sancar K., Pühler A., Rückert C., Kalinowski J. Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032. BMC Genomics. 2013;14:714. PubMed PMC
Gomez M., Doukhan L., Nair G., Smith I. sigA is an essential gene in Mycobacterium smegmatis. Mol. Microbiol. 1998;29:617–628. PubMed
Hu Y., Morichaud Z., Chen S., Leonetti J.P., Brodolin K. Mycobacterium tuberculosis RbpA protein is a new type of transcriptional activator that stabilizes the σ A-containing RNA polymerase holoenzyme. Nucleic Acids Res. 2012;40:6547–6557. PubMed PMC
Bortoluzzi A., Muskett F.W., Waters L.C., Addis P.W., Rieck B., Munder T., Schleier S., Forti F., Ghisotti D., Carr M.D., et al. Mycobacterium tuberculosis RNA polymerase-binding protein A (RbpA) and its interactions with sigma factors. J. Biol. Chem. 2013;288:14438–14450. PubMed PMC
Paget M.S., Molle V., Cohen G., Aharonowitz Y., Buttner M.J. Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon. Mol. Microbiol. 2001;42:1007–1020. PubMed
Tabib-Salazar A., Liu B., Doughty P., Lewis R.A., Ghosh S., Parsy M.L., Simpson P.J., O'Dwyer K., Matthews S.J., Paget M.S. The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase. Nucleic Acids Res. 2013;41:5679–5691. PubMed PMC
MoaB2, a newly identified transcription factor, binds to σA in Mycobacterium smegmatis
Mycobacterial HelD connects RNA polymerase recycling with transcription initiation
RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria
6S-Like scr3559 RNA Affects Development and Antibiotic Production in Streptomyces coelicolor
Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase