• This record comes from PubMed

rPredictorDB: a predictive database of individual secondary structures of RNAs and their formatted plots

. 2019 Jan 01 ; 2019 () : .

Language English Country Great Britain, England Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Secondary data structure of RNA molecules provides insights into the identity and function of RNAs. With RNAs readily sequenced, the question of their structural characterization is increasingly important. However, RNA structure is difficult to acquire. Its experimental identification is extremely technically demanding, while computational prediction is not accurate enough, especially for large structures of long sequences. We address this difficult situation with rPredictorDB, a predictive database of RNA secondary structures that aims to form a middle ground between experimentally identified structures in PDB and predicted consensus secondary structures in Rfam. The database contains individual secondary structures predicted using a tool for template-based prediction of RNA secondary structure for the homologs of the RNA families with at least one homolog with experimentally solved structure. Experimentally identified structures are used as the structural templates and thus the prediction has higher reliability than de novo predictions in Rfam. The sequences are downloaded from public resources. So far rPredictorDB covers 7365 RNAs with their secondary structures. Plots of the secondary structures use the Traveler package for readable display of RNAs with long sequences and complex structures, such as ribosomal RNAs. The RNAs in the output of rPredictorDB are extensively annotated and can be viewed, browsed, searched and downloaded according to taxonomic, sequence and structure data. Additionally, structure of user-provided sequences can be predicted using the templates stored in rPredictorDB.

See more in PubMed

Sussman J.L., Lin D.W., Jiang J.S. et al. (1998) Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr. D Biol. Crystallogr., 54, 1078–1084. PubMed

Cannone J.J., Subramanian S., Schnare M.N. et al. (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics, 3, 2. PubMed PMC

Andronescu M., Bereg V., Hoos H.H. et al. (2008) RNA STRAND: the RNA secondary structure and statistical analysis database. BMC Bioinformatics, 9, 340. PubMed PMC

Kalvari I., Argasinska J., Quinones-Olvera N. et al. (2017) Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res., 46, D335–D342. PubMed PMC

Panek J., Modrak M. and Schwarz M. (2017) An algorithm for template-based prediction of secondary structures of individual RNA sequences. Front. Genet., 8, 147. PubMed PMC

Lorenz R., Bernhart S.H., Honer Zu Siederdissen C. et al. (2011) ViennaRNA Package 2.0. Algorithms Mol. Biol., 6, 26. PubMed PMC

Elias R. and Hoksza D. (2017) TRAVeLer: a tool for template-based RNA secondary structure visualization. BMC Bioinformatics, 18, 487. PubMed PMC

Fallmann J., Will S., Engelhardt J. et al. (2017) Recent advances in RNA folding. J. Biotechnol., 261, 97–104. PubMed

Mathews D.H. (2006) Revolutions in RNA secondary structure prediction. J. Mol. Biol., 359, 526–532. PubMed

Gardner P.P. and Giegerich R. (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics, 5, 140. PubMed PMC

Antczak M., Zok T., Popenda M. et al. (2014) RNApdbee—a webserver to derive secondary structures from pdb files of knotted and unknotted RNAs. Nucleic Acids Res., 42, W368–W372. PubMed PMC

Darty K., Denise A. and Ponty Y. (2009) VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics, 25, 1974–1975. PubMed PMC

Quast C., Pruesse E., Yilmaz P. et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res., 41, D590–D596. PubMed PMC

Nawrocki E.P. and Eddy S.R. (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics, 29, 2933–2935. PubMed PMC

Camacho C., Coulouris G., Avagyan V. et al. (2009) BLAST+: architecture and applications. BMC Bioinformatics, 10, 421. PubMed PMC

Bentley S.D., Chater K.F., Cerdeno-Tarraga A.M. et al. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141–147. PubMed

Wassarman K.M. and Storz G. (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell, 101, 613–623. PubMed

Ando Y., Asari S., Suzuma S. et al. (2002) Expression of a small RNA, BS203 RNA, from the yocI-yocJ intergenic region of Bacillus subtilis genome. FEMS Microbiol. Lett., 207, 29–33. PubMed

Sharma C.M., Darfeuille F., Plantinga T.H. et al. (2007) A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev., 21, 2804–2817. PubMed PMC

Salehi-Ashtiani K., Luptak A., Litovchick A. et al. (2006) A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science, 313, 1788–1792. PubMed

Skilandat M., Rowinska-Zyrek M. and Sigel R.K. (2014) Solution structure and metal ion binding sites of the human CPEB3 ribozyme’s P4 domain. J. Biol. Inorg. Chem., 19, 903–912. PubMed

Esterling L. and Delihas N. (1994) The regulatory RNA gene micF is present in several species of gram-negative bacteria and is phylogenetically conserved. Mol. Microbiol., 12, 639–646. PubMed

Hnilicova J., Jirat Matejckova J., Sikova M. et al. (2014) Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res., 42, 11763–11776. PubMed PMC

Panek J., Krasny L., Bobek J. et al. (2011) The suboptimal structures find the optimal RNAs: homology search for bacterial non-coding RNAs using suboptimal RNA structures. Nucleic Acids Res., 39, 3418–3426. PubMed PMC

Argaman L. and Altuvia S. (2000) fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. J. Mol. Biol., 300, 1101–1112. PubMed

Tsai H.Y., Pulukkunat D.K., Woznick W.K. et al. (2006) Functional reconstitution and characterization of Pyrococcus furiosus RNase P. Proc. Natl. Acad. Sci. USA, 103, 16147–16152. PubMed PMC

Marquez S.M., Harris J.K., Kelley S.T. et al. (2005) Structural implications of novel diversity in eucaryal RNase P RNA. RNA, 11, 739–751. PubMed PMC

Davis B.M., Quinones M., Pratt J. et al. (2005) Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J. Bacteriol., 187, 4005–4014. PubMed PMC

Moller T., Franch T., Udesen C. et al. (2002) Spot 42 RNA mediates discoordinate expression of the E. Coli galactose operon. Genes Dev., 16, 1696–1706. PubMed PMC

Nagai K., Muto Y., Pomeranz Krummel D.A. et al. (2001) Structure and assembly of the spliceosomal snRNPs. Biochem. Soc. Trans., 29, 15–26. PubMed

Krol A., Branlant C., Lazar E. et al. (1981) Primary and secondary structures of chicken, rat and man nuclear U4 RNAs. Homologies with U1 and U5 RNAs. Nucleic Acids Res., 9, 2699–2716. PubMed PMC

Macke T.J., Ecker D.J., Gutell R.R. et al. (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res., 29, 4724–4735. PubMed PMC

Sievers F., Wilm A., Dineen D. et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 7, 539. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...