R2DT is a framework for predicting and visualising RNA secondary structure using templates
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
Wellcome Trust - United Kingdom
R01 HG006753
NHGRI NIH HHS - United States
218302/Z/19/Z
Wellcome Trust - United Kingdom
BB/N019199/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
34108470
PubMed Central
PMC8190129
DOI
10.1038/s41467-021-23555-5
PII: 10.1038/s41467-021-23555-5
Knihovny.cz E-zdroje
- MeSH
- databáze nukleových kyselin MeSH
- konformace nukleové kyseliny MeSH
- nekódující RNA chemie MeSH
- reprodukovatelnost výsledků MeSH
- RNA chemie MeSH
- sekvenční analýza RNA MeSH
- software MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- nekódující RNA MeSH
- RNA MeSH
Non-coding RNAs (ncRNA) are essential for all life, and their functions often depend on their secondary (2D) and tertiary structure. Despite the abundance of software for the visualisation of ncRNAs, few automatically generate consistent and recognisable 2D layouts, which makes it challenging for users to construct, compare and analyse structures. Here, we present R2DT, a method for predicting and visualising a wide range of RNA structures in standardised layouts. R2DT is based on a library of 3,647 templates representing the majority of known structured RNAs. R2DT has been applied to ncRNA sequences from the RNAcentral database and produced >13 million diagrams, creating the world's largest RNA 2D structure dataset. The software is amenable to community expansion, and is freely available at https://github.com/rnacentral/R2DT and a web server is found at https://rnacentral.org/r2dt .
Department of Biomolecular Engineering University of California Santa Cruz Santa Cruz CA USA
Department of Integrative Biology The University of Texas at Austin Austin TX USA
European Molecular Biology Laboratory European Bioinformatics Institute Cambridge UK
Zobrazit více v PubMed
Westhof, E., Masquida, B. & Jossinet, F. Predicting and modeling RNA architecture. Cold Spring Harb. Perspect. Biol. 3, a003632 (2011). PubMed PMC
Cannone JJ, et al. The comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform. 2002;3:1–31. doi: 10.1186/1471-2105-3-1. PubMed DOI PMC
Holley RW, et al. Structure of a ribonucleic acid. Science. 1965;147:1462–1465. doi: 10.1126/science.147.3664.1462. PubMed DOI
Gerighausen, D., Hausdorf, A. & Zänker, S. iDotter: an Interactive Dot Plot Viewer (Václav Skala - UNION Agency, 2017).
Wattenberg, M. Arc diagrams: visualizing structure in strings. in IEEE Symposium on Information Visualization, 2002. INFOVIS 2002. 110–116 (IEEE, 2002).
Lai D, Proctor JR, Zhu JYA, Meyer IM. R-CHIE: a web server and R package for visualizing RNA secondary structures. Nucleic Acids Res. 2012;40:e95. doi: 10.1093/nar/gks241. PubMed DOI PMC
Darty K, Denise A, Ponty Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009;25:1974–1975. doi: 10.1093/bioinformatics/btp250. PubMed DOI PMC
Kerpedjiev P, Hammer S, Hofacker IL. Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams. Bioinformatics. 2015;31:3377–3379. doi: 10.1093/bioinformatics/btv372. PubMed DOI PMC
Bruccoleri RE, Heinrich G. An improved algorithm for nucleic acid secondary structure display. Comput. Appl. Biosci. 1988;4:167–173. PubMed
Yang H, et al. Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res. 2003;31:3450–3460. doi: 10.1093/nar/gkg529. PubMed DOI PMC
Lu X-J, Olson WK. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003;31:5108–5121. doi: 10.1093/nar/gkg680. PubMed DOI PMC
Byun Y, Han K. PseudoViewer: web application and web service for visualizing RNA pseudoknots and secondary structures. Nucleic Acids Res. 2006;34:W416–W422. doi: 10.1093/nar/gkl210. PubMed DOI PMC
Weinberg Z, Breaker RR. R2R-software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinform. 2011;12:3. doi: 10.1186/1471-2105-12-3. PubMed DOI PMC
Johnson PZ, Kasprzak WK, Shapiro BA, Simon AE. RNA2Drawer: geometrically strict drawing of nucleic acid structures with graphical structure editing and highlighting of complementary subsequences. RNA Biol. 2019;16:1667–1671. doi: 10.1080/15476286.2019.1659081. PubMed DOI PMC
Shabash B, Wiese KC. jViz.RNA 4.0—visualizing pseudoknots and RNA editing employing compressed tree graphs. PLoS ONE. 2019;14:e0210281. doi: 10.1371/journal.pone.0210281. PubMed DOI PMC
Wiegreffe D, Alexander D, Stadler PF, Zeckzer D. RNApuzzler: efficient outerplanar drawing of RNA-secondary structures. Bioinformatics. 2019;35:1342–1349. doi: 10.1093/bioinformatics/bty817. PubMed DOI
Shabash B, Wiese KC. RNA visualization: relevance and the current state-of-the-art focusing on pseudoknots. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017;14:696–712. doi: 10.1109/TCBB.2016.2522421. PubMed DOI
Ponty Y, Leclerc F. Drawing and editing the secondary structure(s) of RNA. Methods Mol. Biol. 2015;1269:63–100. doi: 10.1007/978-1-4939-2291-8_5. PubMed DOI
Muller G, Gaspin C, Etienne A, Westhof E. Automatic display of RNA secondary structures. Comput. Appl. Biosci. 1993;9:551–561. PubMed
Gruber AR, Bernhart SH, Lorenz R. The ViennaRNA web services. Methods Mol. Biol. 2015;1269:307–326. doi: 10.1007/978-1-4939-2291-8_19. PubMed DOI
Nawrocki, E. Structural RNA homology search and alignment using covariance models. All Theses and Dissertations (ETDs) (2009).
The RNAcentral Consortium. RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res. 2019;47:D221–D229. doi: 10.1093/nar/gky1034. PubMed DOI PMC
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–2935. doi: 10.1093/bioinformatics/btt509. PubMed DOI PMC
Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. 10.1101/614032 (2019). PubMed PMC
Elias R, Hoksza D. TRAVeLer: a tool for template-based RNA secondary structure visualization. BMC Bioinform. 2017;18:487. doi: 10.1186/s12859-017-1885-4. PubMed DOI PMC
Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998;26:148–153. doi: 10.1093/nar/26.1.148. PubMed DOI PMC
Lee JC, Gutell RR. A comparison of the crystal structures of eukaryotic and bacterial SSU ribosomal RNAs reveals common structural features in the hypervariable regions. PLoS ONE. 2012;7:e38203. doi: 10.1371/journal.pone.0038203. PubMed DOI PMC
Petrov AS, et al. Secondary structure and domain architecture of the 23S and 5S rRNAs. Nucleic Acids Res. 2013;41:7522–7535. doi: 10.1093/nar/gkt513. PubMed DOI PMC
Leontis NB, Westhof E. A common motif organizes the structure of multi-helix loops in 16S and 23S ribosomal RNAs. J. Mol. Biol. 1998;283:571–583. doi: 10.1006/jmbi.1998.2106. PubMed DOI
Haselman T, Gutell RR, Jurka J, Fox GE. Additional Watson-Crick interactions suggest a structural core in large subunit ribosomal RNA. J. Biomol. Struct. Dyn. 1989;7:181–186. doi: 10.1080/07391102.1989.10507759. PubMed DOI
Noller HF, et al. Secondary structure model for 23S ribosomal RNA. Nucleic Acids Res. 1981;9:6167–6189. doi: 10.1093/nar/9.22.6167. PubMed DOI PMC
Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. The complete atomic structure of the large ribosomal subunit at 2.4A resolution. Science. 2000;289:905–920. doi: 10.1126/science.289.5481.905. PubMed DOI
Gutell, R. R. Evolutionary characteristics of 16S and 23S rRNA structures. (ed. Hyman Hartman, K. M.) 243–309 (World Scientific Publishing Co., 1992).
Gerbi, S. A. Expansion segments: regions of variable size that interrupt the universal core secondary structure of ribosomal RNA. in Ribosomal RNA—Structure, Evolution, Processing, and Function in Protein Synthesis 71–87 (CRC Press, 1996).
Giegé R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 1998;26:5017–5035. doi: 10.1093/nar/26.22.5017. PubMed DOI PMC
Brennan T, Sundaralingam M. Structure, of transfer RNA molecules containing the long variable loop. Nucleic Acids Res. 1976;3:3235–3252. doi: 10.1093/nar/3.11.3235. PubMed DOI PMC
XRNA. http://rna.ucsc.edu/rnacenter/xrna/xrna.html (2009).
Jelínek, J. et al. rPredictorDB: a predictive database of individual secondary structures of RNAs and their formatted plots. Database2019, baz047 (2019). PubMed PMC
O’Leary NA, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC
Basu S, et al. DictyBase 2013: integrating multiple Dictyostelid species. Nucleic Acids Res. 2013;41:D676–D683. doi: 10.1093/nar/gks1064. PubMed DOI PMC
Thurmond J, et al. FlyBase 2.0: the next generation. Nucleic Acids Res. 2019;47:D759–D765. doi: 10.1093/nar/gky1003. PubMed DOI PMC
Smith CL, et al. Mouse genome database (MGD)-2018: knowledgebase for the laboratory mouse. Nucleic Acids Res. 2018;46:D836–D842. doi: 10.1093/nar/gkx1006. PubMed DOI PMC
McDowall MD, et al. PomBase 2015: updates to the fission yeast database. Nucleic Acids Res. 2015;43:D656–D661. doi: 10.1093/nar/gku1040. PubMed DOI PMC
Cherry JM, et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 2012;40:D700–D705. doi: 10.1093/nar/gkr1029. PubMed DOI PMC
Berardini TZ, et al. The Arabidopsis information resource: Making and mining the ‘gold standard’ annotated reference plant genome. Genesis. 2015;53:474–485. doi: 10.1002/dvg.22877. PubMed DOI PMC
Yook K, et al. WormBase 2012: more genomes, more data, new website. Nucleic Acids Res. 2012;40:D735–D741. doi: 10.1093/nar/gkr954. PubMed DOI PMC
Yates B, et al. Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res. 2017;45:D619–D625. doi: 10.1093/nar/gkw1033. PubMed DOI PMC
Keseler IM, et al. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res. 2017;45:D543–D550. doi: 10.1093/nar/gkw1003. PubMed DOI PMC
Hufsky, F. et al. Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Briefings in Bioinformatics22, 642–663 (2020). PubMed PMC
Gutell RR, Lee JC, Cannone JJ. The accuracy of ribosomal RNA comparative structure models. Curr. Opin. Struct. Biol. 2002;12:301–310. doi: 10.1016/S0959-440X(02)00339-1. PubMed DOI
Weiser, B. & Noller, H. F. XRNA: auto-interactive program for modeling RNA. in The Center for Molecular Biology of RNA (University of California, Santa Cruz, 1995).
Petrov AS, et al. Secondary structures of rRNAs from all three domains of life. PLoS ONE. 2014;9:e88222. doi: 10.1371/journal.pone.0088222. PubMed DOI PMC
Bernier CR, Petrov AS, Kovacs NA, Penev PI, Williams LD. Translation: the universal structural core of life. Mol. Biol. Evol. 2018;35:2065–2076. doi: 10.1093/molbev/msy101. PubMed DOI PMC
Leontis, N. B. & Zirbel, C. L. Nonredundant 3D structure datasets for RNA knowledge extraction and benchmarking. in RNA 3D Structure Analysis and Prediction (eds. Leontis, N. & Westhof, E.) 281–298 (Springer Berlin Heidelberg, 2012).
Berman HM, et al. The protein data bank. Acta Crystallogr. D. Biol. Crystallogr. 2002;58:899–907. doi: 10.1107/S0907444902003451. PubMed DOI
Sarver M, Zirbel CL, Stombaugh J, Mokdad A, Leontis NB. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J. Math. Biol. 2008;56:215–252. doi: 10.1007/s00285-007-0110-x. PubMed DOI PMC
Bernier CR, et al. RiboVision suite for visualization and analysis of ribosomes. Faraday Discuss. 2014;169:195–207. doi: 10.1039/C3FD00126A. PubMed DOI
Rivas E, Clements J, Eddy SR. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat. Methods. 2017;14:45–48. doi: 10.1038/nmeth.4066. PubMed DOI PMC
Brown JW. The Ribonuclease P database. Nucleic Acids Res. 1996;24:236–237. doi: 10.1093/nar/24.1.236. PubMed DOI PMC
Armstrong DR, et al. PDBe: improved findability of macromolecular structure data in the PDB. Nucleic Acids Res. 2020;48:D335–D343. PubMed PMC
Lu X-J, Bussemaker HJ, Olson WK. DSSR: an integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 2015;43:e142. doi: 10.1093/nar/gkv541. PubMed DOI PMC
Eddy SR. Accelerated profile HMM searches. PLoS Comput. Biol. 2011;7:e1002195. doi: 10.1371/journal.pcbi.1002195. PubMed DOI PMC
Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29:2487–2489. doi: 10.1093/bioinformatics/btt403. PubMed DOI PMC
Madeira F, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–W641. doi: 10.1093/nar/gkz268. PubMed DOI PMC
Sweeney, B. et al. R2DT v1.1. 10.5281/zenodo.4700588 (2021).
Meade, C., Weiser, B., Noller, H. F. & Petrov, A. S. XRNA-GT v1.1. 10.5281/zenodo.4727745 (2021).
Baron C, Westhof E, Böck A, Giegé R. Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser) J. Mol. Biol. 1993;231:274–292. doi: 10.1006/jmbi.1993.1282. PubMed DOI
Hubert N, Sturchler C, Westhof E, Carbon P, Krol A. The 9/4 secondary structure of eukaryotic selenocysteine tRNA: more pieces of evidence. RNA. 1998;4:1029–1033. doi: 10.1017/S1355838298980888. PubMed DOI PMC
R2DT: a comprehensive platform for visualizing RNA secondary structure
R2DT: A COMPREHENSIVE PLATFORM FOR VISUALISING RNA SECONDARY STRUCTURE
Reduction of Ribosomal Expansion Segments in Yeast Species of the Magnusiomyces/Saprochaete Clade
GERONIMO: A tool for systematic retrieval of structural RNAs in a broad evolutionary context