Biochemical Markers for Assessing Aquatic Contamination

. 2007 Nov 02 ; 7 (11) : 2599-2611. [epub] 20071102

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28903248

Biochemical markers, specifically enzymes of the first phase of xenobiotic transformation - cytochrome P450 and ethoxyresorufin-O-deethylase (EROD) - were used to determine the quantities of persistent organic pollutants (POPs) in fish muscle (PCB, HCB, HCH, OCS, DDT). Eight rivers were monitored (Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina; and the River Blanice was used as a control). The indicator species selected was the chub (Leuciscus cephalus L.). There were no significant differences in cytochrome P450 content between the locations monitored. The highest concentration of cytochrome P450 in fish liver was in the Vltava (0.241 nmol mg-1 protein), and the lowest was in the Orlice (0.120 nmol mg-1 protein). Analysis of EROD activity showed a significant difference between the Blanice and the Vltava (P< 0.05), and also between the Orlice and the Vltava (P< 0.01), the Orlice and the Bílina (P< 0.01), and the Orlice and the Ohře (P< 0.05). The highest EROD activity in fish liver was in the Vltava (576.4 pmol min-1 mg-1 protein), and the lowest was in the Orlice (63.05 pmol min-1 mg-1 protein). In individual locations, results of chemical monitoring and values of biochemical markers were compared. A significant correlation (P< 0.05) was found between biochemical markers and OCS, and PCB. Among the tributaries studied those that contaminated the Elbe most were the Vltava and the Bílina. These tributaries should not be considered the main sources of industrial contamination of the River Elbe, because the most important contamination sources were along the river Elbe itself.

Zobrazit více v PubMed

Payne J.F., Fancey L.L., Rahimtula A.D., Porter E.L. Review and perspective on the use of mixed-function oxygenase enzymes in biological monitoring. Comp. Biochem. Physiol. Pt C. 1987;86:233–245. PubMed

Adams M.S., Ballin U., Gaumert T., Hale B.W., Kausch H., Kruse R. Monitoring selected indicators of ecological change in the Elbe River since the fall of the Iron Curtain. Environ. Conserv. 2001;28:333–344.

Hecker M., Sanderson J.T., Karbe L. Suppression of aromatase activity in populations of bream (Abramis brama) from the River Elbe, Germany. Chemosphere. 2007;66:542–552. PubMed

Randak T., Zlabek V., Kolarova J., Svobodova Z., Hajslova J., Siroka Z., Janska M., Pulkrabova J., Cajka T., Jarkovsky J. Biomarkers detected in chub (Leuciscus cephalus L.) to evaluate contamination of the Elbe and Vltava Rivers, Czech Republic. B. Environ. Contam. Tox. 2006;76:233–241. PubMed

Siroka Z., Krijt J., Randak T., Svobodova Z., Peskova G., Fuksa J., Hajslova J., Jarkovsky J., Janska M. Organic pollutant contamination of the River Elbe as assessed by biochemical markers. Acta Vet. BRNO. 2005;74:293–303.

Stachel B., Ehrhorn U., Heemken O.P., Lepom P., Reincke H., Sawal G., Theobald N. Xenoestrogens in the River Elbe and its tributaries. Environ. Pollut. 2003;124:497–507. PubMed

Zlabek V., Svobodova Z., Randak T., Valentova O. Mercury content in the muscle of fish from the Elbe River and its tributaries. Czech J. Anim. Sci. 2005;50:528–534.

Jung D.K.J., Klaus T., Fent K. Cytochrome P450 induction by nitrated polycyclic aromatic hydrocarbons, azaarenes, and binary mixtures in fish hepatoma cell line PLHC-1. Environ. Toxicol. Chem. 2001;20:149–159. PubMed

van der Oost R., Beyer J., Vermeulen N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharm. 2003;13:57–149. PubMed

White R.D., Shea D., Stegeman J.J. Metabolism of the aryl hydrocarbon receptor agonist 3,3',4,4'tetrachlorobiphenyl by the marine fish scup (Stenotomus chrysops) in vivo and in vitro. Drug Metab. Dispos. 1997;25:564–572. PubMed

Malins D.C., McCain B.B., Brown D.W., Chan S.L., Myers M.S., Landahl J.T., Prohaska P.G., Friedman A.J., Rhodes L.D., Burrows D.G., Gronlund W.D., Hodgins H.O. Chemical-pollutants in sediments and diseases of bottom-dwelling fish in Puget Sound, Washington. Environ. Sci. Technol. 1984;18:705–713.

Anzenbacherova E., Anzenbacher P. Cytochromy P450 a metabolismus xenobiotik. Bull. Ceske Spol. Biochem. Mol. Biol. 1999;1:4–33.

Flammarion P., Devaux A., Nehls S., Migeon B., Noury P., Garric J. Multibiomarker responses in fish from the Moselle River (France) Ecotox. Environ. Safe. 2002;51:145–153. PubMed

Koehler H.R., Sandu C., Scheil V., Nagy-Petrica E.M., Segner H., Telcean I., Stan G., Triebskorn R. Monitoring pollution in River Mures, Romania, Part III: biochemical effect markers in fish and integrative reflection. Environ. Monit. Assess. 2007;127:47–54. PubMed

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. PubMed

Hajslova J., Schoula R., Holadova K., Poustka J. Analysis of PCBs in biotic matrices by 2-dimensional GC-ECD. Int. J. Environ. An. Ch. 1995;60:163–173.

Goksoyr A., Forlin L. The cytochrome P-450 system in fish, aquatic toxicology and environmental monitoring. Aquat. Toxicol. 1992;22:287–311.

Mayon N., Bertrand A., Leroy D., Malbrouck C., Mandiki S.N.M., Silvestre F., Goffart A., Thome J.P., Kestemont P. Multiscale approach of fish responses to different types of environmental contaminations: A case study. Sci. Total Environ. 2006;367:715–731. PubMed

Al-Arabi S.A.M., Adolfsson-Erici M., Waagbo R., Ali M.S., Goksoyr A. Contaminant accumulation and biomarker responses in caged fish exposed to effluents from anthropogenic sources in the Karnaphuly River, Bangladesh. Environ. Toxicol. Chem. 2005;24:1968–1978. PubMed

Behrens A., Segner H. Cytochrome P4501A induction in brown trout exposed to small streams of an urbanised area: results of a five-year-study. Environ. Pollut. 2005;136:231–242. PubMed

Broeg K., Zander S., Diamant A., Korting W., Kruner G., Paperna I., von Westernhagen H. The use of fish metabolic, pathological and parasitological indices in pollution monitoring - 1. North Sea. Helgoland Mar. Res. 1999;53:171–194.

Jedamskigrymlas J., Kammann U., Tempelmann A., Karbe L., Siebers D. Biochemical responses and environmental contaminants in breams (Abramis-brama L) caught in the River Elbe. Ecotox. Environ. Safe. 1995;31:49–56. PubMed

Jedamskigrymlas J., Lange U., Siebers D., Karbe L. Induction of the hepatic biotransformation system of golden ide [Leuciscus-idus (L)] after exposure in the River Elbe. Ecotox. Environ. Safe. 1994;28:35–42. PubMed

Heinisch E., Kettrup A., Bergheim W., Holoubek I., Wenzel S. PCB in aquatic ecosystems of the river Elbe and Berlin waters - Source oriented monitoring. Fresen. Environ. Bull. 2003;12:103–110.

Breivik K., Sweetman A., Pacyna J.M., Jones K.C. Towards a global historical emission inventory for selected PCB congeners - A mass balance approach. 3. An update. Sci. Total Environ. 2007;377:296–307. PubMed

Kitamura S., Yoshida M., Sugihara K., Ohta S. Reductive dechlorination of p,p '-DDT mediated by hemoproteins in the hepatopancreas and blood of goldfish, Carassius auratus. J. Health Sci. 1999;45:217–221.

Ackermann G.E., Brombacher E., Fent K. Development of a fish reporter gene system for the assessment of estrogenic compounds and sewage treatment plant effluents. Environ. Toxicol. Chem. 2002;21:1864–1875. PubMed

Toppari J., Larsen J.C., Christiansen P., Giwercman A., Grandjean P., Guillette L.J., Jegou B., Jensen T.K., Jouannet P., Keiding N., Leffers H., McLachlan J.A., Meyer O., Muller J., RajpertDeMeyts E., Scheike T., Sharpe R., Sumpter J., Skakkebaek N.E. Male reproductive health and environmental xenoestrogens. Environ. Health Perspect. 1996;104:741–803. PubMed PMC

Leanos-Castaneda O., Van Der Kraak G., Rodriguez-Canul R., Gold G. Endocrine disruption mechanism of o,p'-DDT in mature male tilapia (Oreochromis niloticus) Toxicol. Appl. Pharm. 2007;221:158–167. PubMed

Metcalfe T.L., Metcalfe C.D., Kiparissis Y., Niimi A.J., Foran C.M., Benson W.H. Gonadal development and endocrine responses in Japanese medaka (Oryzias latipes) exposed to o,p '-DDT in water or through maternal transfer. Environ. Toxicol. Chem. 2000;19:1893–1900.

Nims R.W., Lubet R.A., Fox S.D., Jones C.R., Thomas P.E., Reddy A.B., Kocarek T.A. Comparative pharmacodynamics of CYP2B induction by DDT, DDE, and DDD in male rat liver and cultured rat hepatocytes. J. Toxicol. Env. Health Pt A. 1998;53:455–477. PubMed

Gonzalez A., Piferrer F. Aromatase activity in the European sea bass (Dicentrarchus labrax L.) brain. Distribution and changes in relation to age, sex, and the annual reproductive cycle. Gen. Comp. Endocr. 2003;132:223–230. PubMed

Bailey R.E. Global hexachlorobenzene emissions. Chemosphere. 2001;43:167–182. PubMed

Heinisch E., Kettrup A., Bergheim W., Martens D., Wenzel S. Persistent chlorinated hydrocarbons (PCHC), source-oriented monitoring in aquatic media. 4. The chlorobenzenes. Fresen. Environ. Bull. 2006;15:148–169.

Luckas B., Oehme M. Characteristic contamination levels for polychlorinated hydrocarbons, dibenzofurans and dibenzo-para-dioxins in bream (Abramis brama) from the River Elbe. Chemosphere. 1990;21:79–89.

Oxynos K., Schramm K.W., Marth P., Schmitzer J. Chlorinated hydrocarbons (CHC) and PCDD/F-levels in sediments and breams (Abramis-brama) from the River Elbe (A contribution to the German Environmental Specimen Banking) Fresenius J. Anal. Chem. 1995;353:98–100. PubMed

Marth P., Oxynos K., Schmitzer J., Schramm K.W., Kettrup A. Levels of chlorinated hydrocarbons (CHC) in breams (Abramis brama) from the River Elbe (A contribution to the Federal Environmental Specimen Bank) Chemosphere. 1997;34:2183–2192. PubMed

Bester K., Biselli S., Ellerichmann T., Huhnerfuss H., Moller K., Rimkus G., Wolf M. Chlorostyrenes in fish and sediment samples from the River Elbe. Chemosphere. 1998;37:2459–2471. PubMed

Deboer J., Vandervalk F., Kerkhoff M.A.T., Hagel P., Brinkman U.A.T. 8-year study on the elimination of PCBs and other organochlorine compounds from eel (Anguilla-anguilla) under natural conditions. Environ. Sci. Technol. 1994;28:2242–2248. PubMed

Ferrante M.C., Cirillo T., Naso B., Clausi M.T., Lucisano A., Cocchieri R.A. Polychlorinated biphenyls and organochlorine pesticides in seafood from the Gulf of Naples (Italy) J. Food Protect. 2007;70:706–715. PubMed

Vorkamp K., Riget F., Glasius M., Pecseli M., Lebeuf M., Muir D. Chlorobenzenes, chlorinated pesticides, coplanar chlorobiphenyls and other organochlorine compounds in Greenland biota. Sci. Total Environ. 2004;331:157–175. PubMed

Yang N.Q., Matsuda M., Kawano M., Wakimoto T. PCBs and organochlorine pesticides (OCPs) in edible fish and shellfish from China. Chemosphere. 2006;63:1342–1352. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Persistent organic pollutants in muscle of fish collected from the Nové Mlýny reservoir in Southern Moravia, Czech Republic

. 2015 Jul ; 187 (7) : 448. [epub] 20150620

1-Hydroxypyrene--a biochemical marker for PAH pollution assessment of aquatic ecosystem

. 2010 ; 10 (1) : 203-17. [epub] 20091228

Leeches as Sensor-bioindicators of River Contamination by PCBs

. 2009 ; 9 (3) : 1807-20. [epub] 20090313

Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology

. 2008 Oct 01 ; 8 (10) : 6125-6131. [epub] 20081001

Biochemical markers for the assessment of aquatic environment contamination

. 2008 Sep ; 1 (2) : 169-81.

Comparison of Mercury Distribution Between Liver and Muscle - A Biomonitoring of Fish from Lightly and Heavily Contaminated Localities

. 2008 Jul 10 ; 8 (7) : 4095-4109. [epub] 20080710

Biomarkers of Contaminant Exposure in Chub (Leuciscus cephalus L.) - Biomonitoring of Major Rivers in the Czech Republic

. 2008 Apr 11 ; 8 (4) : 2589-2603. [epub] 20080411

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...