1-Hydroxypyrene--a biochemical marker for PAH pollution assessment of aquatic ecosystem
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22315535
PubMed Central
PMC3270836
DOI
10.3390/s100100203
PII: s100100203
Knihovny.cz E-zdroje
- Klíčová slova
- SPMD, aquatic pollution, bile, fish, polycyclic aromatic hydrocarbons, the Svitava and Svratka rivers,
- MeSH
- biologické markery analýza MeSH
- biotest metody MeSH
- chemické látky znečišťující vodu analýza MeSH
- hydrobiologie metody MeSH
- polycyklické aromatické uhlovodíky analýza MeSH
- pyreny analýza MeSH
- ryby metabolismus MeSH
- voda chemie MeSH
- žluč chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-hydroxypyrene MeSH Prohlížeč
- biologické markery MeSH
- chemické látky znečišťující vodu MeSH
- polycyklické aromatické uhlovodíky MeSH
- pyreny MeSH
- voda MeSH
The aim of the present study was to assess aquatic contamination by polycyclic aromatic hydrocarbons (PAH), using the 1-hydroxypyrene (1-OHP) content in fish bile as a biochemical marker. A total of 71 chub (Leuciscus cephalus L.) were collected from seven locations on the Svitava and Svratka rivers in and around the industrial city of Brno, Czech Republic. The levels of 1-OHP were determined by reverse phase HPLC with fluorescence detection after deconjugation. Normalising the molar concentration of the biliary 1-OHP to the biliary protein content reduced sample variation. The content of 1-OHP was correlated with the PAH level in bottom sediment and semi-permeable membrane devices (SPMD), which was analyzed by a combination of HPLC/FLD and GC/MS methods. The highest mean values of 1-OHP were found in fish caught at the Svratka River at locations Modřice (169.2 ± 99.7 ng · mg(-1) protein) and Rajhradice (152.2 ± 79.7 ng · mg(-1) protein), which are located downstream from Brno. These values were significantly (P < 0.05) higher than those obtained from localities Kníničky (98.4 ± 66.1 ng · mg(-1) protein) and Bílovice nad Svitavou (64.1 ± 31.4 ng · mg(-1) protein). The lowest contents of PAH in sediment and SPMD were found at location Kníničky (1.5 mg · kg(-1) dry mass and 19.4 ng · L(-1), respectively). The highest contents of PAH in sediment and SPMD were found in Rajhradice (26.0 mg · kg(-1) dry mass) and Svitava before junction (65.4 ng · L(-1)), respectively. A Spearman correlation test was applied to determine the relationship between biliary 1-OHP and the sum of PAH in sediment and SPMD. A positive, but no statistically significant correlation was found. The main impact sources of elevated level of PAHs in sites located downstream from Brno are most probably intensive industrial and agricultural activities and domestic waste.
Zobrazit více v PubMed
Douben P., editor. PAHs: An Ecotoxicological Perspective. John Wiley and Sons Ltd; Bedford, UK: 2003.
Christensen E.R., Bzdusek A. PAHs in sediments of the Black River and the Ashtabula River, Ohio: source apportionment by factor analysis. Wat. Res. 2005;39:551–524. PubMed
Quality Criteria for Water 1986. US Environmental Protection Agency (EPA); Washington, DC, USA: 1987. EPA 440/5-86-00.
Tuvikene A. Responses of fish to polycyclic aromatic hydrocarbons (PAHs) Ann. Zoo. Fennici. 1995;32:295–309.
Ruddock P.J., Bird D.J., McCalley D.V. Bile metabolites of polycyclic aromitc hydrocarbons in three species of fish from the severn estuary. Ecotox. Environ. Safe. 2002;51:97–105. PubMed
Van der Oost R., Van Schooten F.J., Ariese F., Heida H., Saturmalay K., Vemeulen N.P.E. Bioaccumulation, biotransformation and DNA binding of PAHs in feral eel (Anguilla anguilla) exposed to polluited sediments: a field survey. Environ. Toxicol. Chem. 1994;13:859–870.
Johnson-Restrepo B., Olivero-Verbel J., Lu S.J., Guette-Fernandez J., Baldiris-Avila R., O’Byrne-Hoyos I., Aldous K.M., Addink R., Kannan K. Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environ. Pollut. 2008;151:452–459. PubMed
Barra R. Sanchez-Hernility of PAHs in the Biobio river (Chile): MFO activity and biliary fluorescence in juvenile. Chemosphere. 2001;45:439–444. PubMed
Fragoso N.M., Hodson P.V., Zambon S. Evaluation of an exposure assay to measure uptake of sediment PAH by fish. Environ. Monit. Assess. 2006;116:481–511. PubMed
Richardson D.M., Davies I.M., Moffat C.F., Pollard P., Stagg R.M. Biliary PAH metabolites and EROD activity in flounder (Platichthys flesus) from a contaminated estuarine environment. J. Environ. Monit. 2001;3:610–615. PubMed
Blahova J., Kruzikova K., Hilscherova K., Grabic R., Halirova J., Jurcikova J., Ocelka T., Svobodova Z. Biliary 1-hydroxypyrene as a biomarker of exposure to polycyclic aromatic hydrocarbons in fish. Neuroendocrinol. Lett. 2008;29:663–668. PubMed
Larsen J. Levels of pollutants and their metabolites: exposure to organic substances. Toxicology. 1995;101:11–27. PubMed
Jacob J., Seidel A. Review: Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J. Chromatogr. B. 2002;778:31–47. PubMed
Ruddock P.J., Bird D.J., McEvoy J., Peters L.D. Bile metabolites of polycyclic aromatic hydrocarbons (PAHs) in European eels Anguilla anguilla from United Kingdom estuaries. Sci. Total. Environ. 2003;301:105–117. PubMed
Lin E.L.C., Cormier S.M., Racine R.N. Synchronous fluorometric measurement of metabolites of polycyclic aromatic hydrocarbons in the bile of brown bullhead. Environ. Toxicol. Chem. 1994;13:707–715.
Vuontisjarvi H., Keinanen M., Vuorinen P.J., Peltonen K. A comparison of HPLC with fluorescence detection and fixed wavelength fluorescence methods for the determination of polycyclic aromatic hydrocarbon metabolites in fish bile. Polycycl. Aromat. Comp. 2004;24:333–342.
Jonsson F., Beyer J., Wells D., Ariese F. The application of HPLC-F and GC-MS to the analysis of selected hydroxyl polycyclic hydrocarbons in two certified fish bile reference materials. J. Environ. Monit. 2003;5:513–520. PubMed
Hosnedl T., Hajslova J., Kocourek V., Tomaniova M., Volka K. 1-hydroxypyrene as a biomarker for fish exposure to polycyclic aromatic hydrocarbons. Bull. Environ. Contam. Toxicol. 2003;71:465–472. PubMed
Kammann U. PAH metabolites in bile fluids of dab (Limanda limanda) and flounder (Platichthys flesus): Spatial distribution and seasonal changes. Environ. Sci. Pollut. Res. 2007;14:102–108. PubMed
Zhang W., Xu D., Zhuang G., Ding C.H., Wang G., Chang J., Ren G. A pilot study on using urinary 1-hydroxypyrene biomarker for exposure to PAHs in Beijing. Environ. Monit. 2007;131:387–394. PubMed
Vuorinen P.J., Keinanen M., Vuontisjarvi H., Barsiene J., Broeg K., Forlin L., Gercken J., Kopecka J., Kohler A., Parkkonen J., Pempkowiak J., Schiedek D. Use of biliary PAH metabolites as a biomarker of pollution in fish from the Baltic Sea. Mar. Pollut. Bull. 2006;53:479–487. PubMed
Havelkova M., Randak T., Zlabek V., Krijt J., Kroupova H., Pulkrabova J., Svobodova Z. Biochemical markers for assessing aquatic contamination. Sensors. 2007;7:2599–2611. PubMed PMC
Havelkova M., Blahova J., Kroupova H., Randak T., Slatinska I., Leontovycova D., Grabic R., Pospisil R., Svobodova Z. Biomarkers of contaminant exposure in chub (Leuciscus cephalus L.)–Biomonitoring of major rivers in the Czech Republic. Sensors. 2008;8:2589–2603. PubMed PMC
Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85. PubMed
Blahova J., Havelkova M., Kruzikova K., Harustiakova D., Kasikova B., Hypr D., Jurcikova J., Ocelka T., Svobodova Z. Biochemical markers as a tool for pollution assessment on the Svitava and Svratka rivers, Czech Republic. Neuroendocrinol. Lett. 2009 (in press). PubMed
Blahova J., Havelkova M., Kruzikova K., Hilscherova K., Halouzka R., Modra H., Grabic R., Halirova J., Jurcikova J., Ocelka, Harustiakova D., Svobodova Z. Assessment of contamination of the Svitava and Svratka rivers using selected biochemical markers. Environ. Toxicol. Chem. 2010 (in press). PubMed
Keith L.H. Environmental Endocrine Disruptors. John Wiley & Sons, Inc; New York, NY, USA: 1997.
Chikae M., Ikeda R., Hasan Q., Morita Y., Tamiya E. Effect of alkylphenols on adult male medaka: plasma vitellogenin goes up to the level of estrous female. Environ. Toxicol. Chem. 2003;15:33–36. PubMed
Tairova Z.H., Giessing A.M.B., Hansen R., Andersen O. 1-hydroxypyrene as a biomarker of PAH exposure in the marine polychaete Nereis diversicolor. Mar. Environ. Res. 2009;67:38–46. PubMed
Harman C., Holth T.F., Hylland K., Thomas K., Grung M. Relationship between polycyclic aromatic hydrocarbon (PAH) accumulation in semipermeable membrane devices and PAH bile metabolite levels in Atlantic cod (Gadus morhua) J. Toxicol. Environ. Health A. 2009;72:234–243. PubMed
Barra R., Quiroz R., Saez K., Araneda A., Urrutia R., Popp P. Sources of polycyclic aromatic hydrocarbons (PAHs) in sediment of the Biobio River in south central Chile. Environ. Chem. Lett. 2009;7:133–139.
Ariese F., Kok S.J., Verkaik M., Cooijer C., Velthrost N.H., Hofstraat J.W. Synchronous fluorescence spectrometry of fish bile: a rapid screening method for the biomonitoring of PAH exposure. Aquat. Toxicol. 1993;26:273–286.
Verweij F., Booij K., Satumalay K., van der Molen N., van der Oost R. Assessment of bioavailable PAH, P’CB and OCP concentrations in water, using semipermeable membrane devices (SPMD), sediments and caged carp. Chemosphere. 2004;54:1675–1689. PubMed