R2DT: a comprehensive platform for visualizing RNA secondary structure

. 2025 Feb 08 ; 53 (4) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39921562

Grantová podpora
R01 GM085328 NIGMS NIH HHS - United States
20 894 U.S. National Library of Medicine
EMBL
R01HG006753 NIH HHS - United States
308291-00001 United States Department of Agriculture
DGE-1840340 National Science Foundation Graduate Research Fellowship Award
2022065 NSF CEP - Centrální evidence projektů
312990-00001 National Science Foundation
218302/Z/19/Z WT
e-INFRA CZ project
Ministry of Education
NLM NIH HHS - United States
80NSSC24K0344 NASA - United States

RNA secondary (2D) structure visualization is an essential tool for understanding RNA function. R2DT is a software package designed to visualize RNA 2D structures in consistent, recognizable, and reproducible layouts. The latest release, R2DT 2.0, introduces multiple significant features, including the ability to display position-specific information, such as single nucleotide polymorphisms or SHAPE reactivities. It also offers a new template-free mode allowing visualization of RNAs without pre-existing templates, alongside a constrained folding mode and support for animated visualizations. Users can interactively modify R2DT diagrams, either manually or using natural language prompts, to generate new templates or create publication-quality images. Additionally, R2DT features faster performance, an expanded template library, and a growing collection of compatible tools and utilities. Already integrated into multiple biological databases, R2DT has evolved into a comprehensive platform for RNA 2D visualization, accessible at https://r2dt.bio.

Před aktualizací

PubMed

Zobrazit více v PubMed

Cannone  JJ, Subramanian  S, Schnare  MN  et al. .  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics. 2002; 3:1–31.10.1186/1471-2105-3-2. PubMed DOI PMC

Ponty  Y, Leclerc  F.  Drawing and editing the secondary structure(s) of RNA. Methods Mol Biol. 2015; 1269:63–100.10.1007/978-1-4939-2291-8_5. PubMed DOI

Kerpedjiev  P, Hammer  S, Hofacker  IL.  Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics. 2015; 31:3377–79.10.1093/bioinformatics/btv372. PubMed DOI PMC

Weinberg  Z, Breaker  RR.  R2R–software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics. 2011; 12:3.10.1186/1471-2105-12-3. PubMed DOI PMC

Sieg  JP, Forstmeier  PC, Bevilacqua  PC  R2easyR facilitates mapping experimental RNA reactivity data to secondary structures drawn with R2R. 10.5281/zenodo.4683742. DOI

Das  R, Watkins  AM.  RiboDraw: semiautomated two-dimensional drawing of RNA tertiary structure diagrams. NAR Genom Bioinform. 2021; 3:lqab091.10.1093/nargab/lqab091. PubMed DOI PMC

Jossinet  F.  RNArtist: an interactive tool to construct and manage a collection of RNA 2D structures. https://github.com/fjossinet/RNArtist.

Johnson  PZ, Simon  AE.  RNAcanvas: interactive drawing and exploration of nucleic acid structures. Nucleic Acids Res. 2023; 51:W501–8.10.1093/nar/gkad302. PubMed DOI PMC

Wiegreffe  D, Alexander  D, Stadler  PF  et al. .  RNApuzzler: efficient outerplanar drawing of RNA-secondary structures. Bioinformatics. 2019; 35:1342–49.10.1093/bioinformatics/bty817. PubMed DOI

Mitra  R, Cohen  AS, Rohs  R.  RNAscape: geometric mapping and customizable visualization of RNA structure. Nucleic Acids Res. 2024; 52:W354–61.10.1093/nar/gkae269. PubMed DOI PMC

Darty  K, Denise  A, Ponty  Y.  VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009; 25:1974–75.10.1093/bioinformatics/btp250. PubMed DOI PMC

Sweeney  BA, Hoksza  D, Nawrocki  EP  et al. .  R2DT is a framework for predicting and visualizing RNA secondary structure using templates. Nat Commun. 2021; 12:3494.10.1038/s41467-021-23555-5. PubMed DOI PMC

Elias  R, Hoksza  D.  TRAVeLer: A tool for template-based RNA secondary structure visualization. BMC Bioinformatics. 2017; 18:487.10.1186/s12859-017-1885-4. PubMed DOI PMC

Madeira  F, Madhusoodanan  N, Lee  J  et al. .  The EMBL-EBI job dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024; 52:W521–25.10.1093/nar/gkae241. PubMed DOI PMC

Camacho  C, Coulouris  G, Avagyan  V  et al. .  BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10:421.10.1186/1471-2105-10-421. PubMed DOI PMC

Schäffer  AA, McVeigh  R, Robbertse  B  et al. .  Ribovore: ribosomal RNA sequence analysis for GenBank submissions and database curation. BMC Bioinformatics. 2021; 22:400.10.1186/s12859-021-04316-z. PubMed DOI PMC

Chan  PP, Lin  BY, Mak  AJ  et al. .  tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021; 49:9077–96.10.1093/nar/gkab688. PubMed DOI PMC

Nawrocki  EP, Eddy  SR.  Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013; 29:2933–35.10.1093/bioinformatics/btt509. PubMed DOI PMC

Kalvari  I, Nawrocki  EP, Ontiveros-Palacios  N  et al. .  Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021; 49:D192–200.10.1093/nar/gkaa1047. PubMed DOI PMC

Wong  B.  Color blindness. Nat Methods. 2011; 8:441–1.10.1038/nmeth.1618. PubMed DOI

Lan  TCT, Allan  MF, Malsick  LE  et al. .  Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat Commun. 2022; 13:1128.10.1038/s41467-022-28603-2. PubMed DOI PMC

Durrant  MG, Perry  NT, Pai  JJ  et al. .  Bridge RNAs direct programmable recombination of target and donor DNA. Nature. 2024; 630:984–93.10.1038/s41586-024-07552-4. PubMed DOI PMC

Triebel  S, Lamkiewicz  K, Ontiveros  N  et al. .  Comprehensive survey of conserved RNA secondary structures in full-genome alignment of Hepatitis C virus. Sci Rep. 2024; 14:15145.10.1038/s41598-024-62897-0. PubMed DOI PMC

Scholten  NR, Haandrikman  D, Tolhuis  JO  et al. .  SHAPEwarp-web: sequence-agnostic search for structurally homologous RNA regions across databases of chemical probing data. Nucleic Acids Res. 2024; 52:W362–7.10.1093/nar/gkae348. PubMed DOI PMC

Leontis  NB, Westhof  E.  Geometric nomenclature and classification of RNA base pairs. RNA. 2001; 7:499–512.10.1017/S1355838201002515. PubMed DOI PMC

Lannelongue  L, Aronson  H-EG, Bateman  A  et al. .  GREENER principles for environmentally sustainable computational science. Nat Comput Sci. 2023; 3:514–21.10.1038/s43588-023-00461-y. PubMed DOI

wwPDB consortium  Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019; 47:D520–8.10.1093/nar/gky949. PubMed DOI PMC

Lorenz  R, Bernhart  SH, Höner  Zu Siederdissen C  et al. .  ViennaRNA package 2.0. Algorithms Mol Biol. 2011; 6:26.10.1186/1748-7188-6-26. PubMed DOI PMC

Chan  PP, Brown  JW, Lowe  TM.  Modeling the thermoproteaceae RNase P RNA. RNA Biol. 2012; 9:1155–60.10.4161/rna.21502. PubMed DOI PMC

Cottilli  P, Itoh  Y, Nobe  Y  et al. .  Cryo-EM structure and rRNA modification sites of a plant ribosome. Plant Commun. 2022; 3:100342.10.1016/j.xplc.2022.100342. PubMed DOI PMC

Shalev-Benami  M, Zhang  Y, Rozenberg  H  et al. .  Atomic resolution snapshot of Leishmania ribosome inhibition by the aminoglycoside paromomycin. Nat Commun. 2017; 8:1589.10.1038/s41467-017-01664-4. PubMed DOI PMC

Hashem  Y, des Georges  A, Fu  J  et al. .  High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. Nature. 2013; 494:385–9.10.1038/nature11872. PubMed DOI PMC

Ramrath  DJF, Niemann  M, Leibundgut  M  et al. .  Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science. 2018; 362:eaau7735.10.1126/science.aau7735. PubMed DOI

McCann  HM, Meade  CD, Banerjee  B  et al. .  RiboVision2: a web server for advanced visualization of ribosomal RNAs. J Mol Biol. 2024; 436:168556.10.1016/j.jmb.2024.168556. PubMed DOI

Chan  PP, Lowe  TM.  GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 2016; 44:D184–9.10.1093/nar/gkv1309. PubMed DOI PMC

Ellis  JC, Brown  JW.  The RNase P family. RNA Biol. 2009; 6:362–9.10.4161/rna.6.4.9241. PubMed DOI

Brown  JW, Haas  ES, Gilbert  DG  et al. .  The ribonuclease P database. Nucl Acids Res. 1994; 22:3660–2.10.1093/nar/22.17.3660. PubMed DOI PMC

Sprinzl  M, Hartmann  T, Meissner  F  et al. .  Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1987; 15 Suppl:r53–r188.10.1093/nar/15.suppl.r53. PubMed DOI PMC

RNAcentral Consortium  RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Res. 2021; 49:D212–20.10.1093/nar/gkaa921. PubMed DOI PMC

Bergeron  D, Paraqindes  H, Fafard-Couture  É  et al. .  snoDB 2.0: an enhanced interactive database, specializing in human snoRNAs. Nucleic Acids Res. 2023; 51:D291–6.10.1093/nar/gkac835. PubMed DOI PMC

Öztürk-Çolak  A, Marygold  SJ, Antonazzo  G  et al. .  FlyBase: updates to the Drosophilagenes and genomes database. Genetics. 2024; 227:iyad211.10.1093/genetics/iyad211. PubMed DOI PMC

Rutherford  KM, Lera-Ramírez  M, Wood  V.  PomBase: a global core biodata resource-growth, collaboration, and sustainability. Genetics. 2024; 227:iyae007.10.1093/genetics/iyae007. PubMed DOI PMC

Wong  ED, Miyasato  SR, Aleksander  S  et al. .  Saccharomyces genome database update: server architecture, pan-genome nomenclature, and external resources. Genetics. 2023; 224:iyac191.10.1093/genetics/iyac191. PubMed DOI PMC

Lawson  CL, Berman  HM, Chen  L  et al. .  The Nucleic Acid Knowledgebase: a new portal for 3D structural information about nucleic acids. Nucleic Acids Res. 2024; 52:D245–54.10.1093/nar/gkad957. PubMed DOI PMC

Irving  PS, Weeks  KM.  RNAvigate: efficient exploration of RNA chemical probing datasets. Nucleic Acids Res. 2024; 52:2231–41.10.1093/nar/gkae089. PubMed DOI PMC

Armstrong  DR, Berrisford  JM, Conroy  MJ  et al. .  PDBe: improved findability of macromolecular structure data in the PDB. Nucleic Acids Res. 2020; 48:D335–43. PubMed PMC

Sarver  M, Zirbel  CL, Stombaugh  J  et al. .  FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J Math Biol. 2007; 56:215–52.10.1007/s00285-007-0110-x. PubMed DOI PMC

Sehnal  D, Bittrich  S, Deshpande  M  et al. .  Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021; 49:W431–7.10.1093/nar/gkab314. PubMed DOI PMC

Halvorsen  M, Martin  JS, Broadaway  S  et al. .  Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet. 2010; 6:e1001074.10.1371/journal.pgen.1001074. PubMed DOI PMC

Bu  F, Lin  X, Liao  W  et al. .  Ribocentre-switch: a database of riboswitches. Nucleic Acids Res. 2024; 52:D265–72.10.1093/nar/gkad891. PubMed DOI PMC

Das  R.  RNA structure: a renaissance begins. Nat Methods. 2021; 18:439–9.10.1038/s41592-021-01132-4. PubMed DOI

Miao  Z, Adamiak  RW, Antczak  M  et al. .  RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers. RNA. 2020; 26:982–95.10.1261/rna.075341.120. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...