R2DT: a comprehensive platform for visualizing RNA secondary structure
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 GM085328
NIGMS NIH HHS - United States
20 894
U.S. National Library of Medicine
EMBL
R01HG006753
NIH HHS - United States
308291-00001
United States Department of Agriculture
DGE-1840340
National Science Foundation Graduate Research Fellowship Award
2022065
NSF
CEP - Centrální evidence projektů
312990-00001
National Science Foundation
218302/Z/19/Z
WT
e-INFRA CZ project
Ministry of Education
NLM NIH HHS - United States
80NSSC24K0344
NASA - United States
PubMed
39921562
PubMed Central
PMC11806352
DOI
10.1093/nar/gkaf032
PII: 8005627
Knihovny.cz E-zdroje
- MeSH
- jednonukleotidový polymorfismus MeSH
- konformace nukleové kyseliny * MeSH
- počítačová grafika MeSH
- RNA * chemie MeSH
- sbalování RNA MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA * MeSH
RNA secondary (2D) structure visualization is an essential tool for understanding RNA function. R2DT is a software package designed to visualize RNA 2D structures in consistent, recognizable, and reproducible layouts. The latest release, R2DT 2.0, introduces multiple significant features, including the ability to display position-specific information, such as single nucleotide polymorphisms or SHAPE reactivities. It also offers a new template-free mode allowing visualization of RNAs without pre-existing templates, alongside a constrained folding mode and support for animated visualizations. Users can interactively modify R2DT diagrams, either manually or using natural language prompts, to generate new templates or create publication-quality images. Additionally, R2DT features faster performance, an expanded template library, and a growing collection of compatible tools and utilities. Already integrated into multiple biological databases, R2DT has evolved into a comprehensive platform for RNA 2D visualization, accessible at https://r2dt.bio.
Department of Biomedical Data Science Stanford University Palo Alto CA 94305 5102 United States
Department of Software Engineering Charles University Prague 118 00 Czech Republic
Faculty of Life Sciences University of Strasbourg Strasbourg 67000 France
Independent Researcher Tbilisi Georgia
Riboscope Ltd 23 King Street Cambridge CB1 1AH United Kingdom
School of Biological Sciences Georgia Institute of Technology Atlanta GA 30332 0400 United States
Zobrazit více v PubMed
Cannone JJ, Subramanian S, Schnare MN et al. . The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics. 2002; 3:1–31.10.1186/1471-2105-3-2. PubMed DOI PMC
Ponty Y, Leclerc F. Drawing and editing the secondary structure(s) of RNA. Methods Mol Biol. 2015; 1269:63–100.10.1007/978-1-4939-2291-8_5. PubMed DOI
Kerpedjiev P, Hammer S, Hofacker IL. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics. 2015; 31:3377–79.10.1093/bioinformatics/btv372. PubMed DOI PMC
Weinberg Z, Breaker RR. R2R–software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinformatics. 2011; 12:3.10.1186/1471-2105-12-3. PubMed DOI PMC
Sieg JP, Forstmeier PC, Bevilacqua PC R2easyR facilitates mapping experimental RNA reactivity data to secondary structures drawn with R2R. 10.5281/zenodo.4683742. DOI
Das R, Watkins AM. RiboDraw: semiautomated two-dimensional drawing of RNA tertiary structure diagrams. NAR Genom Bioinform. 2021; 3:lqab091.10.1093/nargab/lqab091. PubMed DOI PMC
Jossinet F. RNArtist: an interactive tool to construct and manage a collection of RNA 2D structures. https://github.com/fjossinet/RNArtist.
Johnson PZ, Simon AE. RNAcanvas: interactive drawing and exploration of nucleic acid structures. Nucleic Acids Res. 2023; 51:W501–8.10.1093/nar/gkad302. PubMed DOI PMC
Wiegreffe D, Alexander D, Stadler PF et al. . RNApuzzler: efficient outerplanar drawing of RNA-secondary structures. Bioinformatics. 2019; 35:1342–49.10.1093/bioinformatics/bty817. PubMed DOI
Mitra R, Cohen AS, Rohs R. RNAscape: geometric mapping and customizable visualization of RNA structure. Nucleic Acids Res. 2024; 52:W354–61.10.1093/nar/gkae269. PubMed DOI PMC
Darty K, Denise A, Ponty Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009; 25:1974–75.10.1093/bioinformatics/btp250. PubMed DOI PMC
Sweeney BA, Hoksza D, Nawrocki EP et al. . R2DT is a framework for predicting and visualizing RNA secondary structure using templates. Nat Commun. 2021; 12:3494.10.1038/s41467-021-23555-5. PubMed DOI PMC
Elias R, Hoksza D. TRAVeLer: A tool for template-based RNA secondary structure visualization. BMC Bioinformatics. 2017; 18:487.10.1186/s12859-017-1885-4. PubMed DOI PMC
Madeira F, Madhusoodanan N, Lee J et al. . The EMBL-EBI job dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024; 52:W521–25.10.1093/nar/gkae241. PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V et al. . BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10:421.10.1186/1471-2105-10-421. PubMed DOI PMC
Schäffer AA, McVeigh R, Robbertse B et al. . Ribovore: ribosomal RNA sequence analysis for GenBank submissions and database curation. BMC Bioinformatics. 2021; 22:400.10.1186/s12859-021-04316-z. PubMed DOI PMC
Chan PP, Lin BY, Mak AJ et al. . tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021; 49:9077–96.10.1093/nar/gkab688. PubMed DOI PMC
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013; 29:2933–35.10.1093/bioinformatics/btt509. PubMed DOI PMC
Kalvari I, Nawrocki EP, Ontiveros-Palacios N et al. . Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021; 49:D192–200.10.1093/nar/gkaa1047. PubMed DOI PMC
Wong B. Color blindness. Nat Methods. 2011; 8:441–1.10.1038/nmeth.1618. PubMed DOI
Lan TCT, Allan MF, Malsick LE et al. . Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat Commun. 2022; 13:1128.10.1038/s41467-022-28603-2. PubMed DOI PMC
Durrant MG, Perry NT, Pai JJ et al. . Bridge RNAs direct programmable recombination of target and donor DNA. Nature. 2024; 630:984–93.10.1038/s41586-024-07552-4. PubMed DOI PMC
Triebel S, Lamkiewicz K, Ontiveros N et al. . Comprehensive survey of conserved RNA secondary structures in full-genome alignment of Hepatitis C virus. Sci Rep. 2024; 14:15145.10.1038/s41598-024-62897-0. PubMed DOI PMC
Scholten NR, Haandrikman D, Tolhuis JO et al. . SHAPEwarp-web: sequence-agnostic search for structurally homologous RNA regions across databases of chemical probing data. Nucleic Acids Res. 2024; 52:W362–7.10.1093/nar/gkae348. PubMed DOI PMC
Leontis NB, Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001; 7:499–512.10.1017/S1355838201002515. PubMed DOI PMC
Lannelongue L, Aronson H-EG, Bateman A et al. . GREENER principles for environmentally sustainable computational science. Nat Comput Sci. 2023; 3:514–21.10.1038/s43588-023-00461-y. PubMed DOI
wwPDB consortium Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019; 47:D520–8.10.1093/nar/gky949. PubMed DOI PMC
Lorenz R, Bernhart SH, Höner Zu Siederdissen C et al. . ViennaRNA package 2.0. Algorithms Mol Biol. 2011; 6:26.10.1186/1748-7188-6-26. PubMed DOI PMC
Chan PP, Brown JW, Lowe TM. Modeling the thermoproteaceae RNase P RNA. RNA Biol. 2012; 9:1155–60.10.4161/rna.21502. PubMed DOI PMC
Cottilli P, Itoh Y, Nobe Y et al. . Cryo-EM structure and rRNA modification sites of a plant ribosome. Plant Commun. 2022; 3:100342.10.1016/j.xplc.2022.100342. PubMed DOI PMC
Shalev-Benami M, Zhang Y, Rozenberg H et al. . Atomic resolution snapshot of Leishmania ribosome inhibition by the aminoglycoside paromomycin. Nat Commun. 2017; 8:1589.10.1038/s41467-017-01664-4. PubMed DOI PMC
Hashem Y, des Georges A, Fu J et al. . High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. Nature. 2013; 494:385–9.10.1038/nature11872. PubMed DOI PMC
Ramrath DJF, Niemann M, Leibundgut M et al. . Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science. 2018; 362:eaau7735.10.1126/science.aau7735. PubMed DOI
McCann HM, Meade CD, Banerjee B et al. . RiboVision2: a web server for advanced visualization of ribosomal RNAs. J Mol Biol. 2024; 436:168556.10.1016/j.jmb.2024.168556. PubMed DOI
Chan PP, Lowe TM. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 2016; 44:D184–9.10.1093/nar/gkv1309. PubMed DOI PMC
Ellis JC, Brown JW. The RNase P family. RNA Biol. 2009; 6:362–9.10.4161/rna.6.4.9241. PubMed DOI
Brown JW, Haas ES, Gilbert DG et al. . The ribonuclease P database. Nucl Acids Res. 1994; 22:3660–2.10.1093/nar/22.17.3660. PubMed DOI PMC
Sprinzl M, Hartmann T, Meissner F et al. . Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1987; 15 Suppl:r53–r188.10.1093/nar/15.suppl.r53. PubMed DOI PMC
RNAcentral Consortium RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Res. 2021; 49:D212–20.10.1093/nar/gkaa921. PubMed DOI PMC
Bergeron D, Paraqindes H, Fafard-Couture É et al. . snoDB 2.0: an enhanced interactive database, specializing in human snoRNAs. Nucleic Acids Res. 2023; 51:D291–6.10.1093/nar/gkac835. PubMed DOI PMC
Öztürk-Çolak A, Marygold SJ, Antonazzo G et al. . FlyBase: updates to the Drosophilagenes and genomes database. Genetics. 2024; 227:iyad211.10.1093/genetics/iyad211. PubMed DOI PMC
Rutherford KM, Lera-Ramírez M, Wood V. PomBase: a global core biodata resource-growth, collaboration, and sustainability. Genetics. 2024; 227:iyae007.10.1093/genetics/iyae007. PubMed DOI PMC
Wong ED, Miyasato SR, Aleksander S et al. . Saccharomyces genome database update: server architecture, pan-genome nomenclature, and external resources. Genetics. 2023; 224:iyac191.10.1093/genetics/iyac191. PubMed DOI PMC
Lawson CL, Berman HM, Chen L et al. . The Nucleic Acid Knowledgebase: a new portal for 3D structural information about nucleic acids. Nucleic Acids Res. 2024; 52:D245–54.10.1093/nar/gkad957. PubMed DOI PMC
Irving PS, Weeks KM. RNAvigate: efficient exploration of RNA chemical probing datasets. Nucleic Acids Res. 2024; 52:2231–41.10.1093/nar/gkae089. PubMed DOI PMC
Armstrong DR, Berrisford JM, Conroy MJ et al. . PDBe: improved findability of macromolecular structure data in the PDB. Nucleic Acids Res. 2020; 48:D335–43. PubMed PMC
Sarver M, Zirbel CL, Stombaugh J et al. . FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J Math Biol. 2007; 56:215–52.10.1007/s00285-007-0110-x. PubMed DOI PMC
Sehnal D, Bittrich S, Deshpande M et al. . Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021; 49:W431–7.10.1093/nar/gkab314. PubMed DOI PMC
Halvorsen M, Martin JS, Broadaway S et al. . Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet. 2010; 6:e1001074.10.1371/journal.pgen.1001074. PubMed DOI PMC
Bu F, Lin X, Liao W et al. . Ribocentre-switch: a database of riboswitches. Nucleic Acids Res. 2024; 52:D265–72.10.1093/nar/gkad891. PubMed DOI PMC
Das R. RNA structure: a renaissance begins. Nat Methods. 2021; 18:439–9.10.1038/s41592-021-01132-4. PubMed DOI
Miao Z, Adamiak RW, Antczak M et al. . RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers. RNA. 2020; 26:982–95.10.1261/rna.075341.120. PubMed DOI PMC