Reduction of Ribosomal Expansion Segments in Yeast Species of the Magnusiomyces/Saprochaete Clade

. 2024 Aug 05 ; 16 (8) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39119893

Ribosomes are ribonucleoprotein complexes highly conserved across all domains of life. The size differences of ribosomal RNAs (rRNAs) can be mainly attributed to variable regions termed expansion segments (ESs) protruding out from the ribosomal surface. The ESs were found to be involved in a range of processes including ribosome biogenesis and maturation, translation, and co-translational protein modification. Here, we analyze the rRNAs of the yeasts from the Magnusiomyces/Saprochaete clade belonging to the basal lineages of the subphylum Saccharomycotina. We find that these yeasts are missing more than 400 nt from the 25S rRNA and 150 nt from the 18S rRNAs when compared to their canonical counterparts in Saccharomyces cerevisiae. The missing regions mostly map to ESs, thus representing a shift toward a minimal rRNA structure. Despite the structural changes in rRNAs, we did not identify dramatic alterations in the ribosomal protein inventories. We also show that the size-reduced rRNAs are not limited to the species of the Magnusiomyces/Saprochaete clade, indicating that the shortening of ESs happened independently in several other lineages of the subphylum Saccharomycotina.

Zobrazit více v PubMed

Altschul  SF, Gish  W, Miller  W, Myers  EW, Lipman  DJ. Basic local alignment search tool. J Mol Biol. 1990:215(3):403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Barandun  J, Hunziker  M, Vossbrinck  CR, Klinge  S. Evolutionary compaction and adaptation visualized by the structure of the dormant microsporidian ribosome. Nat Microbiol. 2019:4(11):1798–1804. 10.1038/s41564-019-0514-6. PubMed DOI PMC

Ben-Shem  A, Garreau de Loubresse  N, Melnikov  S, Jenner  L, Yusupova  G, Yusupov  M. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science. 2011:334(6062):1524–1529. 10.1126/science.1212642. PubMed DOI

Ben-Shem  A, Jenner  L, Yusupova  G, Yusupov  M. Crystal structure of the eukaryotic ribosome. Science. 2010:330(6008):1203–1209. 10.1126/science.1194294. PubMed DOI

Bernier  CR, Petrov  AS, Waterbury  CC, Jett  J, Li  F, Freil  LE, Xiong  X, Wang  L, Migliozzi  BLR, Hershkovits  E, et al.  RiboVision suite for visualization and analysis of ribosomes. Faraday Discuss. 2014:169:195–207. 10.1039/C3FD00126A. PubMed DOI

Biesiada  M, Hu  MY, Williams  LD, Purzycka  KJ, Petrov  AS. rRNA expansion segment 7 in eukaryotes: from signature fold to tentacles. Nucleic Acids Res. 2022:50(18):10717–10732. 10.1093/nar/gkac844. PubMed DOI PMC

Bizuayehu  TT, Labun  K, Jakubec  M, Jefimov  K, Niazi  AM, Valen  E. Long-read single-molecule RNA structure sequencing using nanopore. Nucleic Acids Res. 2022:50(20):e120. 10.1093/nar/gkac775. PubMed DOI PMC

Bokov  K, Steinberg  SV. A hierarchical model for evolution of 23S ribosomal RNA. Nature. 2009:457(7232):977–980. 10.1038/nature07749. PubMed DOI

Bowman  JC, Petrov  AS, Frenkel-Pinter  M, Penev  PI, Williams  LD. Root of the tree: the significance, evolution, and origins of the ribosome. Chem Rev. 2020:120(11):4848–4878. 10.1021/acs.chemrev.9b00742. PubMed DOI

Bradatsch  B, Leidig  C, Granneman  S, Gnädig  M, Tollervey  D, Böttcher  B, Beckmann  R, Hurt  E. Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nat Struct Mol Biol. 2012:19(12):1234–1241. 10.1038/nsmb.2438. PubMed DOI PMC

Brejová  B, Lichancová  H, Brázdovič  F, Hegedűsová  E, Forgáčová Jakúbková  M, Hodorová  V, Džugasová  V, Baláž  A, Zeiselová  L, Cillingová  A, et al.  Genome sequence of the opportunistic human pathogen Magnusiomyces capitatus. Curr Genet. 2019a:65(2):539–560. 10.1007/s00294-018-0904-y. PubMed DOI

Brejová  B, Lichancová  H, Hodorová  V, Neboháčová  M, Tomáška  Ľ, Vinař  T, Nosek  J. Genome sequence of an arthroconidial yeast Saprochaete fungicola CBS 625.85. Microbiol Resour Announc. 2019b:8(15):e00092–e00019. 10.1128/MRA.00092-19. PubMed DOI PMC

Brown  A, Baird  MR, Yip  MC, Murray  J, Shao  S. Structures of translationally inactive mammalian ribosomes. Elife. 2018:7:e40486. 10.7554/eLife.40486. PubMed DOI PMC

Casaregola  S, Neuvéglise  C, Lépingle  A, Bon  E, Feynerol  C, Artiguenave  F, Wincker  P, Gaillardin  C. Genomic exploration of the hemiascomycetous yeasts: 17. Yarrowia lipolytica. FEBS Lett. 2000:487(1):95–100. 10.1016/S0014-5793(00)02288-2. PubMed DOI

Cech  TR, Damberger  SH, Gutell  RR. Representation of the secondary and tertiary structure of group I introns. Nat Struct Biol. 1994:1(5):273–280. 10.1038/nsb0594-273. PubMed DOI

Collart  MA, Oliviero  S. Preparation of yeast RNA. Curr Protoc Mol Biol. 1993:23(1):13.12.1–13.12.5. 10.1002/0471142727.mb1312s23. PubMed DOI

Cox  J, Mann  M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008:26(12):1367–1372. 10.1038/nbt.1511. PubMed DOI

Darty  K, Denise  A, Ponty  Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009:25(15):1974–1975. 10.1093/bioinformatics/btp250. PubMed DOI PMC

de Hoog  GS, Smith  MT.  2011a. Magnusiomyces zender (1977). In: Kurtzman  CP, Fell  JW, Boekhout  T, editors. The yeasts, a taxonomic study (Fifth Edition). Elsevier, Amsterdam, Netherlands, p. 565–574.

de Hoog  GS, Smith  MT.  2011b. Saprochaete coker & shanor ex D.T.S. Wagner & dawes (1970). In: Kurtzman  CP, Fell  JW, Boekhout  T, editors. The yeasts, a taxonomic study (Fifth Edition). Elsevier, Amsterdam, Netherlands, p. 1317–1327.

de Hoog  GS, Smith  MT. Ribosomal gene phylogeny and species delimitation in Geotrichum and its teleomorphs. Stud Mycol. 2004:50:489–515.

Fujii  K, Susanto  TT, Saurabh  S, Barna  M. Decoding the function of expansion segments in ribosomes. Mol Cell. 2018:72(6):1013–1020. 10.1016/j.molcel.2018.11.023. PubMed DOI PMC

Gabler  F, Nam  S-Z, Till  S, Mirdita  M, Steinegger  M, Söding  J, Lupas  AN, Alva  V. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics. 2020:72(1):e108. 10.1002/cpbi.108. PubMed DOI

Giglione  C, Fieulaine  S, Meinnel  T. N-terminal protein modifications: bringing back into play the ribosome. Biochimie. 2015:114:134–146. 10.1016/j.biochi.2014.11.008. PubMed DOI

Gloge  F, Becker  AH, Kramer  G, Bukau  B. Co-translational mechanisms of protein maturation. Curr Opin Struct Biol. 2014:24:24–33. 10.1016/j.sbi.2013.11.004. PubMed DOI

Gray  MW, Lukes  J, Archibald  JM, Keeling  PJ, Doolittle  WF. Cell biology. Irremediable complexity?  Science. 2010:330(6006):920–921. 10.1126/science.1198594. PubMed DOI

Hiregange  DG, Rivalta  A, Bose  T, Breiner-Goldstein  E, Samiya  S, Cimicata  G, Kulakova  L, Zimmerman  E, Bashan  A, Herzberg  O, et al.  Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite Giardia lamblia. Nucleic Acids Res. 2022:50(3):1770–1782. 10.1093/nar/gkac046. PubMed DOI PMC

Hodorová  V, Lichancová  H, Zubenko  S, Sienkiewicz  K, Penir  SMU, Afanasyev  P, Boceck  D, Bonnin  S, Hakobyan  S, Smyczynska  U, et al.  Genome sequence of the yeast Saprochaete ingens CBS 517.90. Microbiol Resour Announc. 2019:8(50):e01366–e01319. 10.1128/MRA.01366-19. PubMed DOI PMC

Hopes  T, Norris  K, Agapiou  M, McCarthy  CGP, Lewis  PA, O'Connell  MJ, Fontana  J, Aspden  JL. Ribosome heterogeneity in Drosophila melanogaster gonads through paralog-switching. Nucleic Acids Res. 2022:50(4):2240–2257. 10.1093/nar/gkab606. PubMed DOI PMC

Horton  LE, James  P, Craig  EA, Hensold  JO. The yeast hsp70 homologue Ssa is required for translation and interacts with Sis1 and Pab1 on translating ribosomes. J Biol Chem. 2001:276(17):14426–14433. 10.1074/jbc.M100266200. PubMed DOI

Jeeninga  RE, Van Delft  Y, de Graaff-Vincent  M, Dirks-Mulder  A, Venema  J, Raué  HA.  Variable regions V13 and V3 of Saccharomyces cerevisiae contain structural features essential for normal biogenesis and stability of 5.8S and 25S rRNA. RNA. 1997:3:476–488. PubMed PMC

Johnston  M, Hillier  L, Riles  L, Albermann  K, André  B, Ansorge  W, Benes  V, Brückner  M, Delius  H, Dubois  E, et al.  The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature. 1997:387(S6632):87–90. 10.1038/387s087. PubMed DOI PMC

Kalvari  I, Argasinska  J, Quinones-Olvera  N, Nawrocki  EP, Rivas  E, Eddy  SR, Bateman  A, Finn  RD, Petrov  AI. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 2018:46(D1):D335–D342. 10.1093/nar/gkx1038. PubMed DOI PMC

Katoh  K, Standley  DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013:30(4):772–780. 10.1093/molbev/mst010. PubMed DOI PMC

Klinge  S, Woolford  JLJr. Ribosome assembly coming into focus. Nat Rev Mol Cell Biol. 2019:20(2):116–131. 10.1038/s41580-018-0078-y. PubMed DOI PMC

Knorr  AG, Mackens-Kiani  T, Musial  J, Berninghausen  O, Becker  T, Beatrix  B, Beckmann  R. The dynamic architecture of Map1- and NatB-ribosome complexes coordinates the sequential modifications of nascent polypeptide chains. PLoS Biol. 2023:21(4):e3001995. 10.1371/journal.pbio.3001995. PubMed DOI PMC

Knorr  AG, Schmidt  C, Tesina  P, Berninghausen  O, Becker  T, Beatrix  B, Beckmann  R. Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation. Nat Struct Mol Biol. 2019:26(1):35–39. 10.1038/s41594-018-0165-y. PubMed DOI

Kramer  G, Boehringer  D, Ban  N, Bukau  B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol. 2009:16(6):589–597. 10.1038/nsmb.1614. PubMed DOI

Krauer  N, Rauscher  R, Polacek  N. tRNA synthetases are recruited to yeast ribosomes by rRNA expansion segment 7L but do not require association for functionality. Noncoding RNA. 2021:7(4):73. 10.3390/ncrna7040073. PubMed DOI PMC

Lee  K, Ziegelhoffer  T, Delewski  W, Berger  SE, Sabat  G, Craig  EA. Pathway of Hsp70 interactions at the ribosome. Nat Commun. 2021:12(1):5666. 10.1038/s41467-021-25930-8. PubMed DOI PMC

Leppek  K, Byeon  GW, Fujii  K, Barna  M. VELCRO-IP RNA-seq reveals ribosome expansion segment function in translation genome-wide. Cell Rep. 2021:34(3):108629. 10.1016/j.celrep.2020.108629. PubMed DOI PMC

Leppek  K, Fujii  K, Quade  N, Susanto  TT, Boehringer  D, Lenarčič  T, Xue  S, Genuth  NR, Ban  N, Barna  M. 2020. Gene- and species-specific Hox mRNA translation by ribosome expansion segments. Mol Cell. 80(6):980–995.e13. 10.1016/j.molcel.2020.10.023. PubMed DOI PMC

Letunic  I, Bork  P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021:49(W1):W293–W296. 10.1093/nar/gkab301. PubMed DOI PMC

Li  H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018:34(18):3094–3100. 10.1093/bioinformatics/bty191. PubMed DOI PMC

Lichancová  H, Hodorová  V, Sienkiewicz  K, Penir  SMU, Afanasyev  P, Boceck  D, Bonnin  S, Hakobyan  S, Krawczyk  PS, Smyczynska  U, et al.  Genome sequence of flavor-producing yeast Saprochaete suaveolens NRRL Y-17571. Microbiol Resour Announc. 2019:8(9):e00094–e00019. 10.1128/MRA.00094-19. PubMed DOI PMC

Lorenz  R, Bernhart  SH, Höner Zu Siederdissen  C, Tafer  H, Flamm  C, Stadler  PF, Hofacker  IL. ViennaRNA package 2.0. Algorithms Mol Biol. 2011:6(1):1–4. 10.1186/1748-7188-6-26. PubMed DOI PMC

Melnikov  S, Ben-Shem  A, Garreau de Loubresse  N, Jenner  L, Yusupova  G, Yusupov  M. One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol. 2012:19(6):560–567. 10.1038/nsmb.2313. PubMed DOI

Melnikov  SV, Manakongtreecheep  K, Rivera  KD, Makarenko  A, Pappin  DJ, Söll  D. Muller's ratchet and ribosome degeneration in the obligate intracellular parasites microsporidia. Int J Mol Sci. 2018:19(12):4125. 10.3390/ijms19124125. PubMed DOI PMC

Mestre-Fos  S, Penev  PI, Suttapitugsakul  S, Hu  M, Ito  C, Petrov  AS, Wartell  RM, Wu  R, Williams  LD. G-quadruplexes in human ribosomal RNA. J Mol Biol. 2019:431(10):1940–1955. 10.1016/j.jmb.2019.03.010. PubMed DOI PMC

Michalski  A, Damoc  E, Lange  O, Denisov  E, Nolting  D, Müller  M, Viner  R, Schwartz  J, Remes  P, Belford  M, et al.  Ultra high resolution linear ion trap orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics. 2012:11(3):O111.013698. 10.1074/mcp.O111.013698. PubMed DOI PMC

Mirdita  M, Schütze  K, Moriwaki  Y, Heo  L, Ovchinnikov  S, Steinegger  M, ColabFold: making protein folding accessible to all. Nat Methods. 2022:19(6):679–682. 10.1038/s41592-022-01488-1. PubMed DOI PMC

Morel  G, Sterck  L, Swennen  D, Marcet-Houben  M, Onesime  D, Levasseur  A, Jacques  N, Mallet  S, Couloux  A, Labadie  K, et al.  Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Sci Rep. 2015:5(1):11571. 10.1038/srep11571. PubMed DOI PMC

Mudholkar  K, Fitzke  E, Prinz  C, Mayer  MP, Rospert  S. The Hsp70 homolog Ssb affects ribosome biogenesis via the TORC1-Sch9 signaling pathway. Nat Commun. 2017:8(1):937. 10.1038/s41467-017-00635-z. PubMed DOI PMC

Muñoz-Gómez  SA, Bilolikar  G, Wideman  JG, Geiler-Samerotte  K. Constructive neutral evolution 20 years later. J Mol Evol. 2021:89(3):172–182. 10.1007/s00239-021-09996-y. PubMed DOI PMC

Nawrocki  EP, Eddy  SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013:29(22):2933–2935. 10.1093/bioinformatics/btt509. PubMed DOI PMC

Nawrocki  EP, Jones  TA, Eddy  SR. Group I introns are widespread in archaea. Nucleic Acids Res. 2018:46(15):7970–7976. 10.1093/nar/gky414. PubMed DOI PMC

Pánek  J, Kolár  M, Vohradský  J, Valášek  LS. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5′ UTRs and its implications for eukaryotic gene translation regulation. Nucleic Acids Res. 2013:41(16):7625–7634. 10.1093/nar/gkt548. PubMed DOI PMC

Parker  MS, Balasubramaniam  A, Sallee  FR, Parker  SL. The expansion segments of 28S ribosomal RNA extensively match human messenger RNAs. Front Genet. 2018:9:66. 10.3389/fgene.2018.00066. PubMed DOI PMC

Peisker  K, Chiabudini  M, Rospert  S. The ribosome-bound Hsp70 homolog Ssb of Saccharomyces cerevisiae. Biochim Biophys Acta. 2010:1803(6):662–672. 10.1016/j.bbamcr.2010.03.005. PubMed DOI

Perez-Riverol  Y, Bai  J, Bandla  C, García-Seisdedos  D, Hewapathirana  S, Kamatchinathan  S, Kundu  DJ, Prakash  A, Frericks-Zipper  A, Eisenacher  M, et al.  The PRIDE database resources in 2022: a Hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022:50(D1):D543–D552. 10.1093/nar/gkab1038. PubMed DOI PMC

Petrov  AS, Bernier  CR, Gulen  B, Waterbury  CC, Hershkovits  E, Hsiao  C, Harvey  SC, Hud  NV, Fox  GE, Wartell  RM, et al.  Secondary structures of rRNAs from all three domains of life. PLoS One. 2014b:9(2):e88222. 10.1371/journal.pone.0088222. PubMed DOI PMC

Petrov  AS, Bernier  CR, Hsiao  C, Norris  AM, Kovacs  NA, Waterbury  CC, Stepanov  VG, Harvey  SC, Fox  GE, Wartell  RM, et al.  Evolution of the ribosome at atomic resolution. Proc Natl Acad Sci U S A. 2014a:111(28):10251–10256. 10.1073/pnas.1407205111. PubMed DOI PMC

Petrov  AS, Gulen  B, Norris  AM, Kovacs  NA, Bernier  CR, Lanier  KA, Fox  GE, Harvey  SC, Wartell  RM, Hud  NV, et al.  History of the ribosome and the origin of translation. Proc Natl Acad Sci U S A. 2015:112(50):15396–15401. 10.1073/pnas.1509761112. PubMed DOI PMC

Price  MN, Dehal  PS, Arkin  AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One. 2010:5(3):e9490. 10.1371/journal.pone.0009490. PubMed DOI PMC

Ramesh  M, Woolford  JL  Jr. 2016. Eukaryote-specific rRNA expansion segments function in ribosome biogenesis. RNA  22(8):1153–1162. 10.1261/rna.056705.116. PubMed DOI PMC

Ramos  LMG, Smeekens  JM, Kovacs  NA, Bowman  JC, Wartell  RM, Wu  R, Williams  LD. Yeast rRNA expansion segments: folding and function. J Mol Biol. 2016:428(20):4048–4059. 10.1016/j.jmb.2016.08.008. PubMed DOI

Sato  K, Akiyama  M, Sakakibara  Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat Commun. 2021:12(1):941. 10.1038/s41467-021-21194-4. PubMed DOI PMC

Shankar  V, Rauscher  R, Reuther  J, Gharib  WH, Koch  M, Polacek  N, rRNA expansion segment 27Lb modulates the factor recruitment capacity of the yeast ribosome and shapes the proteome. Nucleic Acids Res. 2020:48(6):3244–3256. 10.1093/nar/gkaa003. PubMed DOI PMC

Shedlovskiy  D, Zinskie  JA, Gardner  E, Pestov  DG, Shcherbik  N. Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast. J Biol Chem. 2017:292(45):18469–18485. 10.1074/jbc.M117.800003. PubMed DOI PMC

Shen  XX, Opulente  DA, Kominek  J, Zhou  X, Steenwyk  JL, Buh  KV, Haase  MAB, Wisecaver  JH, Wang  M, Doering  DT, et al.  Tempo and mode of genome evolution in the budding yeast subphylum. Cell. 2018:175(6):1533–1545.e20. 10.1016/j.cell.2018.10.023. PubMed DOI PMC

Sievers  F, Wilm  A, Dineen  D, Gibson  TJ, Karplus  K, Li  W, Lopez  R, McWilliam  H, Remmert  M, Söding  J, et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011:7(1):539. 10.1038/msb.2011.75. PubMed DOI PMC

Song  J, Steidle  L, Steymans  I, Singh  J, Sanner  A, Böttinger  L, Winter  D, Becker  T. The mitochondrial Hsp70 controls the assembly of the F1FO-ATP synthase. Nat Commun. 2023:14(1):39. 10.1038/s41467-022-35720-5. PubMed DOI PMC

Stoiber  M, Quick  J, Egan  R, Lee  JE, Celniker  S, Neely  RK, Loman  N, Pennacchio  LA, Brown  J. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. bioRxiv 094672. 10.1101/094672, 10 April 2017, preprint: not peer reviewed. DOI

Stoltzfus  A. On the possibility of constructive neutral evolution. J Mol Evol. 1999:49(2):169–181. 10.1007/PL00006540. PubMed DOI

Sweeney  BA, Hoksza  D, Nawrocki  EP, Ribas  CE, Madeira  F, Cannone  JJ, Gutell  R, Maddala  A, Meade  CD, Williams  LD, et al.  R2DT is a framework for predicting and visualising RNA secondary structure using templates. Nat Commun. 2021:12(1):3494. 10.1038/s41467-021-23555-5. PubMed DOI PMC

Sweeney  R, Chen  L, Yao  MC. An rRNA variable region has an evolutionarily conserved essential role despite sequence divergence. Mol Cell Biol. 1994:14(6):4203–4215. 10.1128/mcb.14.6.4203-4215.1994. PubMed DOI PMC

Thoms  M, Buschauer  R, Ameismeier  M, Koepke  L, Denk  T, Hirschenberger  M, Kratzat  H, Hayn  M, Mackens-Kiani  T, Cheng  J, et al.  Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science. 2020:369(6508):1249–1255. 10.1126/science.abc8665. PubMed DOI PMC

Tyanova  S, Temu  T, Sinitcyn  P, Carlson  A, Hein  MY, Geiger  T, Mann  M, Cox  J. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016:13(9):731–740. 10.1038/nmeth.3901. PubMed DOI

Ueda-Nishimura  K, Mikata  K. Two distinct 18S rRNA secondary structures in Dipodascus (hemiascomycetes). Microbiology. 2000:146(5):1045–1051. 10.1099/00221287-146-5-1045. PubMed DOI

van Nues  RW, Venema  J, Planta  RJ, Raué  HA. Variable region V1 of Saccharomyces cerevisiae 18S rRNA participates in biogenesis and function of the small ribosomal subunit. Chromosoma. 1997:105(7-8):523–531. 10.1007/BF02510489. PubMed DOI

Vos  TJ, Kothe  U. Synergistic interaction network between the snR30 RNP, Utp23, and ribosomal RNA during ribosome synthesis. RNA Biol. 2022:19(1):764–773. 10.1080/15476286.2022.2078092. PubMed DOI PMC

Warner  JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999:24(11):437–440. 10.1016/S0968-0004(99)01460-7. PubMed DOI

Wegrzyn  RD, Deuerling  E. Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell Mol Life Sci. 2005:62(23):2727–2738. 10.1007/s00018-005-5292-z. PubMed DOI PMC

Wild  K, Aleksić  M, Lapouge  K, Juaire  KD, Flemming  D, Pfeffer  S, Sinning  I. MetAP-like Ebp1 occupies the human ribosomal tunnel exit and recruits flexible rRNA expansion segments. Nat Commun. 2020:11(1):776. 10.1038/s41467-020-14603-7. PubMed DOI PMC

Wild  K, Halic  M, Sinning  I, Beckmann  R. SRP meets the ribosome. Nat Struct Mol Biol. 2004:11(11):1049–1053. 10.1038/nsmb853. PubMed DOI

Woolford  JL  Jr, Baserga  SJ.  Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics  2013:195(3):643–681. 10.1534/genetics.113.153197. PubMed DOI PMC

Zhou  Y, Lu  C, Wu  Q-J, Wang  Y, Sun  Z-T, Deng  J-C, Zhang  Y. GISSD: group I intron sequence and structure database. Nucleic Acids Res. 2008:36(suppl_1):D31–D37. 10.1093/nar/gkm766. PubMed DOI PMC

Zhu  H-Y, Shang  Y-J, Wei  X-Y, Groenewald  M, Robert  V, Zhang  R-P, Li  A-H, Han  P-J, Ji  F, Li  J-N, et al. Taxonomic revision of Geotrichum and Magnusiomyces, with the descriptions of five new Geotrichum species from China. Mycology 2024:1–24. 10.1080/21501203.2023.2294945. DOI

Zimmermann  L, Stephens  A, Nam  S-Z, Rau  D, Kübler  J, Lozajic  M, Gabler  F, Söding  J, Lupas  AN, Alva  V, et al.  A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018:430(15):2237–2243. 10.1016/j.jmb.2017.12.007. PubMed DOI

Zuker  M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003:31(13):3406–3415. 10.1093/nar/gkg595. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace