Reduction of Ribosomal Expansion Segments in Yeast Species of the Magnusiomyces/Saprochaete Clade
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
39119893
PubMed Central
PMC11342254
DOI
10.1093/gbe/evae173
PII: 7730505
Knihovny.cz E-zdroje
- Klíčová slova
- Magnusiomyces, expansion segments, ribosomal RNA, ribosome, yeast,
- MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- ribozomální proteiny genetika MeSH
- ribozomy * metabolismus genetika MeSH
- RNA ribozomální 18S genetika MeSH
- RNA ribozomální * genetika MeSH
- Saccharomyces cerevisiae genetika MeSH
- Saccharomycetales genetika klasifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ribozomální proteiny MeSH
- RNA ribozomální 18S MeSH
- RNA ribozomální * MeSH
- RNA, ribosomal, 25S MeSH Prohlížeč
Ribosomes are ribonucleoprotein complexes highly conserved across all domains of life. The size differences of ribosomal RNAs (rRNAs) can be mainly attributed to variable regions termed expansion segments (ESs) protruding out from the ribosomal surface. The ESs were found to be involved in a range of processes including ribosome biogenesis and maturation, translation, and co-translational protein modification. Here, we analyze the rRNAs of the yeasts from the Magnusiomyces/Saprochaete clade belonging to the basal lineages of the subphylum Saccharomycotina. We find that these yeasts are missing more than 400 nt from the 25S rRNA and 150 nt from the 18S rRNAs when compared to their canonical counterparts in Saccharomyces cerevisiae. The missing regions mostly map to ESs, thus representing a shift toward a minimal rRNA structure. Despite the structural changes in rRNAs, we did not identify dramatic alterations in the ribosomal protein inventories. We also show that the size-reduced rRNAs are not limited to the species of the Magnusiomyces/Saprochaete clade, indicating that the shortening of ESs happened independently in several other lineages of the subphylum Saccharomycotina.
Faculty of Mathematics Physics and Informatics Comenius University Bratislava Bratislava Slovakia
Faculty of Natural Sciences Comenius University Bratislava Bratislava Slovakia
Slovak Academy of Sciences Institute of Chemistry Bratislava Slovakia
Zobrazit více v PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990:215(3):403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Barandun J, Hunziker M, Vossbrinck CR, Klinge S. Evolutionary compaction and adaptation visualized by the structure of the dormant microsporidian ribosome. Nat Microbiol. 2019:4(11):1798–1804. 10.1038/s41564-019-0514-6. PubMed DOI PMC
Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science. 2011:334(6062):1524–1529. 10.1126/science.1212642. PubMed DOI
Ben-Shem A, Jenner L, Yusupova G, Yusupov M. Crystal structure of the eukaryotic ribosome. Science. 2010:330(6008):1203–1209. 10.1126/science.1194294. PubMed DOI
Bernier CR, Petrov AS, Waterbury CC, Jett J, Li F, Freil LE, Xiong X, Wang L, Migliozzi BLR, Hershkovits E, et al. RiboVision suite for visualization and analysis of ribosomes. Faraday Discuss. 2014:169:195–207. 10.1039/C3FD00126A. PubMed DOI
Biesiada M, Hu MY, Williams LD, Purzycka KJ, Petrov AS. rRNA expansion segment 7 in eukaryotes: from signature fold to tentacles. Nucleic Acids Res. 2022:50(18):10717–10732. 10.1093/nar/gkac844. PubMed DOI PMC
Bizuayehu TT, Labun K, Jakubec M, Jefimov K, Niazi AM, Valen E. Long-read single-molecule RNA structure sequencing using nanopore. Nucleic Acids Res. 2022:50(20):e120. 10.1093/nar/gkac775. PubMed DOI PMC
Bokov K, Steinberg SV. A hierarchical model for evolution of 23S ribosomal RNA. Nature. 2009:457(7232):977–980. 10.1038/nature07749. PubMed DOI
Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the tree: the significance, evolution, and origins of the ribosome. Chem Rev. 2020:120(11):4848–4878. 10.1021/acs.chemrev.9b00742. PubMed DOI
Bradatsch B, Leidig C, Granneman S, Gnädig M, Tollervey D, Böttcher B, Beckmann R, Hurt E. Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nat Struct Mol Biol. 2012:19(12):1234–1241. 10.1038/nsmb.2438. PubMed DOI PMC
Brejová B, Lichancová H, Brázdovič F, Hegedűsová E, Forgáčová Jakúbková M, Hodorová V, Džugasová V, Baláž A, Zeiselová L, Cillingová A, et al. Genome sequence of the opportunistic human pathogen Magnusiomyces capitatus. Curr Genet. 2019a:65(2):539–560. 10.1007/s00294-018-0904-y. PubMed DOI
Brejová B, Lichancová H, Hodorová V, Neboháčová M, Tomáška Ľ, Vinař T, Nosek J. Genome sequence of an arthroconidial yeast Saprochaete fungicola CBS 625.85. Microbiol Resour Announc. 2019b:8(15):e00092–e00019. 10.1128/MRA.00092-19. PubMed DOI PMC
Brown A, Baird MR, Yip MC, Murray J, Shao S. Structures of translationally inactive mammalian ribosomes. Elife. 2018:7:e40486. 10.7554/eLife.40486. PubMed DOI PMC
Casaregola S, Neuvéglise C, Lépingle A, Bon E, Feynerol C, Artiguenave F, Wincker P, Gaillardin C. Genomic exploration of the hemiascomycetous yeasts: 17. Yarrowia lipolytica. FEBS Lett. 2000:487(1):95–100. 10.1016/S0014-5793(00)02288-2. PubMed DOI
Cech TR, Damberger SH, Gutell RR. Representation of the secondary and tertiary structure of group I introns. Nat Struct Biol. 1994:1(5):273–280. 10.1038/nsb0594-273. PubMed DOI
Collart MA, Oliviero S. Preparation of yeast RNA. Curr Protoc Mol Biol. 1993:23(1):13.12.1–13.12.5. 10.1002/0471142727.mb1312s23. PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008:26(12):1367–1372. 10.1038/nbt.1511. PubMed DOI
Darty K, Denise A, Ponty Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009:25(15):1974–1975. 10.1093/bioinformatics/btp250. PubMed DOI PMC
de Hoog GS, Smith MT. 2011a. Magnusiomyces zender (1977). In: Kurtzman CP, Fell JW, Boekhout T, editors. The yeasts, a taxonomic study (Fifth Edition). Elsevier, Amsterdam, Netherlands, p. 565–574.
de Hoog GS, Smith MT. 2011b. Saprochaete coker & shanor ex D.T.S. Wagner & dawes (1970). In: Kurtzman CP, Fell JW, Boekhout T, editors. The yeasts, a taxonomic study (Fifth Edition). Elsevier, Amsterdam, Netherlands, p. 1317–1327.
de Hoog GS, Smith MT. Ribosomal gene phylogeny and species delimitation in Geotrichum and its teleomorphs. Stud Mycol. 2004:50:489–515.
Fujii K, Susanto TT, Saurabh S, Barna M. Decoding the function of expansion segments in ribosomes. Mol Cell. 2018:72(6):1013–1020. 10.1016/j.molcel.2018.11.023. PubMed DOI PMC
Gabler F, Nam S-Z, Till S, Mirdita M, Steinegger M, Söding J, Lupas AN, Alva V. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics. 2020:72(1):e108. 10.1002/cpbi.108. PubMed DOI
Giglione C, Fieulaine S, Meinnel T. N-terminal protein modifications: bringing back into play the ribosome. Biochimie. 2015:114:134–146. 10.1016/j.biochi.2014.11.008. PubMed DOI
Gloge F, Becker AH, Kramer G, Bukau B. Co-translational mechanisms of protein maturation. Curr Opin Struct Biol. 2014:24:24–33. 10.1016/j.sbi.2013.11.004. PubMed DOI
Gray MW, Lukes J, Archibald JM, Keeling PJ, Doolittle WF. Cell biology. Irremediable complexity? Science. 2010:330(6006):920–921. 10.1126/science.1198594. PubMed DOI
Hiregange DG, Rivalta A, Bose T, Breiner-Goldstein E, Samiya S, Cimicata G, Kulakova L, Zimmerman E, Bashan A, Herzberg O, et al. Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite Giardia lamblia. Nucleic Acids Res. 2022:50(3):1770–1782. 10.1093/nar/gkac046. PubMed DOI PMC
Hodorová V, Lichancová H, Zubenko S, Sienkiewicz K, Penir SMU, Afanasyev P, Boceck D, Bonnin S, Hakobyan S, Smyczynska U, et al. Genome sequence of the yeast Saprochaete ingens CBS 517.90. Microbiol Resour Announc. 2019:8(50):e01366–e01319. 10.1128/MRA.01366-19. PubMed DOI PMC
Hopes T, Norris K, Agapiou M, McCarthy CGP, Lewis PA, O'Connell MJ, Fontana J, Aspden JL. Ribosome heterogeneity in Drosophila melanogaster gonads through paralog-switching. Nucleic Acids Res. 2022:50(4):2240–2257. 10.1093/nar/gkab606. PubMed DOI PMC
Horton LE, James P, Craig EA, Hensold JO. The yeast hsp70 homologue Ssa is required for translation and interacts with Sis1 and Pab1 on translating ribosomes. J Biol Chem. 2001:276(17):14426–14433. 10.1074/jbc.M100266200. PubMed DOI
Jeeninga RE, Van Delft Y, de Graaff-Vincent M, Dirks-Mulder A, Venema J, Raué HA. Variable regions V13 and V3 of Saccharomyces cerevisiae contain structural features essential for normal biogenesis and stability of 5.8S and 25S rRNA. RNA. 1997:3:476–488. PubMed PMC
Johnston M, Hillier L, Riles L, Albermann K, André B, Ansorge W, Benes V, Brückner M, Delius H, Dubois E, et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature. 1997:387(S6632):87–90. 10.1038/387s087. PubMed DOI PMC
Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman A, Finn RD, Petrov AI. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 2018:46(D1):D335–D342. 10.1093/nar/gkx1038. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013:30(4):772–780. 10.1093/molbev/mst010. PubMed DOI PMC
Klinge S, Woolford JLJr. Ribosome assembly coming into focus. Nat Rev Mol Cell Biol. 2019:20(2):116–131. 10.1038/s41580-018-0078-y. PubMed DOI PMC
Knorr AG, Mackens-Kiani T, Musial J, Berninghausen O, Becker T, Beatrix B, Beckmann R. The dynamic architecture of Map1- and NatB-ribosome complexes coordinates the sequential modifications of nascent polypeptide chains. PLoS Biol. 2023:21(4):e3001995. 10.1371/journal.pbio.3001995. PubMed DOI PMC
Knorr AG, Schmidt C, Tesina P, Berninghausen O, Becker T, Beatrix B, Beckmann R. Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation. Nat Struct Mol Biol. 2019:26(1):35–39. 10.1038/s41594-018-0165-y. PubMed DOI
Kramer G, Boehringer D, Ban N, Bukau B. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol. 2009:16(6):589–597. 10.1038/nsmb.1614. PubMed DOI
Krauer N, Rauscher R, Polacek N. tRNA synthetases are recruited to yeast ribosomes by rRNA expansion segment 7L but do not require association for functionality. Noncoding RNA. 2021:7(4):73. 10.3390/ncrna7040073. PubMed DOI PMC
Lee K, Ziegelhoffer T, Delewski W, Berger SE, Sabat G, Craig EA. Pathway of Hsp70 interactions at the ribosome. Nat Commun. 2021:12(1):5666. 10.1038/s41467-021-25930-8. PubMed DOI PMC
Leppek K, Byeon GW, Fujii K, Barna M. VELCRO-IP RNA-seq reveals ribosome expansion segment function in translation genome-wide. Cell Rep. 2021:34(3):108629. 10.1016/j.celrep.2020.108629. PubMed DOI PMC
Leppek K, Fujii K, Quade N, Susanto TT, Boehringer D, Lenarčič T, Xue S, Genuth NR, Ban N, Barna M. 2020. Gene- and species-specific Hox mRNA translation by ribosome expansion segments. Mol Cell. 80(6):980–995.e13. 10.1016/j.molcel.2020.10.023. PubMed DOI PMC
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021:49(W1):W293–W296. 10.1093/nar/gkab301. PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018:34(18):3094–3100. 10.1093/bioinformatics/bty191. PubMed DOI PMC
Lichancová H, Hodorová V, Sienkiewicz K, Penir SMU, Afanasyev P, Boceck D, Bonnin S, Hakobyan S, Krawczyk PS, Smyczynska U, et al. Genome sequence of flavor-producing yeast Saprochaete suaveolens NRRL Y-17571. Microbiol Resour Announc. 2019:8(9):e00094–e00019. 10.1128/MRA.00094-19. PubMed DOI PMC
Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA package 2.0. Algorithms Mol Biol. 2011:6(1):1–4. 10.1186/1748-7188-6-26. PubMed DOI PMC
Melnikov S, Ben-Shem A, Garreau de Loubresse N, Jenner L, Yusupova G, Yusupov M. One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol. 2012:19(6):560–567. 10.1038/nsmb.2313. PubMed DOI
Melnikov SV, Manakongtreecheep K, Rivera KD, Makarenko A, Pappin DJ, Söll D. Muller's ratchet and ribosome degeneration in the obligate intracellular parasites microsporidia. Int J Mol Sci. 2018:19(12):4125. 10.3390/ijms19124125. PubMed DOI PMC
Mestre-Fos S, Penev PI, Suttapitugsakul S, Hu M, Ito C, Petrov AS, Wartell RM, Wu R, Williams LD. G-quadruplexes in human ribosomal RNA. J Mol Biol. 2019:431(10):1940–1955. 10.1016/j.jmb.2019.03.010. PubMed DOI PMC
Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Müller M, Viner R, Schwartz J, Remes P, Belford M, et al. Ultra high resolution linear ion trap orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics. 2012:11(3):O111.013698. 10.1074/mcp.O111.013698. PubMed DOI PMC
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M, ColabFold: making protein folding accessible to all. Nat Methods. 2022:19(6):679–682. 10.1038/s41592-022-01488-1. PubMed DOI PMC
Morel G, Sterck L, Swennen D, Marcet-Houben M, Onesime D, Levasseur A, Jacques N, Mallet S, Couloux A, Labadie K, et al. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Sci Rep. 2015:5(1):11571. 10.1038/srep11571. PubMed DOI PMC
Mudholkar K, Fitzke E, Prinz C, Mayer MP, Rospert S. The Hsp70 homolog Ssb affects ribosome biogenesis via the TORC1-Sch9 signaling pathway. Nat Commun. 2017:8(1):937. 10.1038/s41467-017-00635-z. PubMed DOI PMC
Muñoz-Gómez SA, Bilolikar G, Wideman JG, Geiler-Samerotte K. Constructive neutral evolution 20 years later. J Mol Evol. 2021:89(3):172–182. 10.1007/s00239-021-09996-y. PubMed DOI PMC
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013:29(22):2933–2935. 10.1093/bioinformatics/btt509. PubMed DOI PMC
Nawrocki EP, Jones TA, Eddy SR. Group I introns are widespread in archaea. Nucleic Acids Res. 2018:46(15):7970–7976. 10.1093/nar/gky414. PubMed DOI PMC
Pánek J, Kolár M, Vohradský J, Valášek LS. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5′ UTRs and its implications for eukaryotic gene translation regulation. Nucleic Acids Res. 2013:41(16):7625–7634. 10.1093/nar/gkt548. PubMed DOI PMC
Parker MS, Balasubramaniam A, Sallee FR, Parker SL. The expansion segments of 28S ribosomal RNA extensively match human messenger RNAs. Front Genet. 2018:9:66. 10.3389/fgene.2018.00066. PubMed DOI PMC
Peisker K, Chiabudini M, Rospert S. The ribosome-bound Hsp70 homolog Ssb of Saccharomyces cerevisiae. Biochim Biophys Acta. 2010:1803(6):662–672. 10.1016/j.bbamcr.2010.03.005. PubMed DOI
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, et al. The PRIDE database resources in 2022: a Hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022:50(D1):D543–D552. 10.1093/nar/gkab1038. PubMed DOI PMC
Petrov AS, Bernier CR, Gulen B, Waterbury CC, Hershkovits E, Hsiao C, Harvey SC, Hud NV, Fox GE, Wartell RM, et al. Secondary structures of rRNAs from all three domains of life. PLoS One. 2014b:9(2):e88222. 10.1371/journal.pone.0088222. PubMed DOI PMC
Petrov AS, Bernier CR, Hsiao C, Norris AM, Kovacs NA, Waterbury CC, Stepanov VG, Harvey SC, Fox GE, Wartell RM, et al. Evolution of the ribosome at atomic resolution. Proc Natl Acad Sci U S A. 2014a:111(28):10251–10256. 10.1073/pnas.1407205111. PubMed DOI PMC
Petrov AS, Gulen B, Norris AM, Kovacs NA, Bernier CR, Lanier KA, Fox GE, Harvey SC, Wartell RM, Hud NV, et al. History of the ribosome and the origin of translation. Proc Natl Acad Sci U S A. 2015:112(50):15396–15401. 10.1073/pnas.1509761112. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One. 2010:5(3):e9490. 10.1371/journal.pone.0009490. PubMed DOI PMC
Ramesh M, Woolford JL Jr. 2016. Eukaryote-specific rRNA expansion segments function in ribosome biogenesis. RNA 22(8):1153–1162. 10.1261/rna.056705.116. PubMed DOI PMC
Ramos LMG, Smeekens JM, Kovacs NA, Bowman JC, Wartell RM, Wu R, Williams LD. Yeast rRNA expansion segments: folding and function. J Mol Biol. 2016:428(20):4048–4059. 10.1016/j.jmb.2016.08.008. PubMed DOI
Sato K, Akiyama M, Sakakibara Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat Commun. 2021:12(1):941. 10.1038/s41467-021-21194-4. PubMed DOI PMC
Shankar V, Rauscher R, Reuther J, Gharib WH, Koch M, Polacek N, rRNA expansion segment 27Lb modulates the factor recruitment capacity of the yeast ribosome and shapes the proteome. Nucleic Acids Res. 2020:48(6):3244–3256. 10.1093/nar/gkaa003. PubMed DOI PMC
Shedlovskiy D, Zinskie JA, Gardner E, Pestov DG, Shcherbik N. Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast. J Biol Chem. 2017:292(45):18469–18485. 10.1074/jbc.M117.800003. PubMed DOI PMC
Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, Wisecaver JH, Wang M, Doering DT, et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell. 2018:175(6):1533–1545.e20. 10.1016/j.cell.2018.10.023. PubMed DOI PMC
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011:7(1):539. 10.1038/msb.2011.75. PubMed DOI PMC
Song J, Steidle L, Steymans I, Singh J, Sanner A, Böttinger L, Winter D, Becker T. The mitochondrial Hsp70 controls the assembly of the F1FO-ATP synthase. Nat Commun. 2023:14(1):39. 10.1038/s41467-022-35720-5. PubMed DOI PMC
Stoiber M, Quick J, Egan R, Lee JE, Celniker S, Neely RK, Loman N, Pennacchio LA, Brown J. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. bioRxiv 094672. 10.1101/094672, 10 April 2017, preprint: not peer reviewed. DOI
Stoltzfus A. On the possibility of constructive neutral evolution. J Mol Evol. 1999:49(2):169–181. 10.1007/PL00006540. PubMed DOI
Sweeney BA, Hoksza D, Nawrocki EP, Ribas CE, Madeira F, Cannone JJ, Gutell R, Maddala A, Meade CD, Williams LD, et al. R2DT is a framework for predicting and visualising RNA secondary structure using templates. Nat Commun. 2021:12(1):3494. 10.1038/s41467-021-23555-5. PubMed DOI PMC
Sweeney R, Chen L, Yao MC. An rRNA variable region has an evolutionarily conserved essential role despite sequence divergence. Mol Cell Biol. 1994:14(6):4203–4215. 10.1128/mcb.14.6.4203-4215.1994. PubMed DOI PMC
Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat H, Hayn M, Mackens-Kiani T, Cheng J, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science. 2020:369(6508):1249–1255. 10.1126/science.abc8665. PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016:13(9):731–740. 10.1038/nmeth.3901. PubMed DOI
Ueda-Nishimura K, Mikata K. Two distinct 18S rRNA secondary structures in Dipodascus (hemiascomycetes). Microbiology. 2000:146(5):1045–1051. 10.1099/00221287-146-5-1045. PubMed DOI
van Nues RW, Venema J, Planta RJ, Raué HA. Variable region V1 of Saccharomyces cerevisiae 18S rRNA participates in biogenesis and function of the small ribosomal subunit. Chromosoma. 1997:105(7-8):523–531. 10.1007/BF02510489. PubMed DOI
Vos TJ, Kothe U. Synergistic interaction network between the snR30 RNP, Utp23, and ribosomal RNA during ribosome synthesis. RNA Biol. 2022:19(1):764–773. 10.1080/15476286.2022.2078092. PubMed DOI PMC
Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999:24(11):437–440. 10.1016/S0968-0004(99)01460-7. PubMed DOI
Wegrzyn RD, Deuerling E. Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell Mol Life Sci. 2005:62(23):2727–2738. 10.1007/s00018-005-5292-z. PubMed DOI PMC
Wild K, Aleksić M, Lapouge K, Juaire KD, Flemming D, Pfeffer S, Sinning I. MetAP-like Ebp1 occupies the human ribosomal tunnel exit and recruits flexible rRNA expansion segments. Nat Commun. 2020:11(1):776. 10.1038/s41467-020-14603-7. PubMed DOI PMC
Wild K, Halic M, Sinning I, Beckmann R. SRP meets the ribosome. Nat Struct Mol Biol. 2004:11(11):1049–1053. 10.1038/nsmb853. PubMed DOI
Woolford JL Jr, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013:195(3):643–681. 10.1534/genetics.113.153197. PubMed DOI PMC
Zhou Y, Lu C, Wu Q-J, Wang Y, Sun Z-T, Deng J-C, Zhang Y. GISSD: group I intron sequence and structure database. Nucleic Acids Res. 2008:36(suppl_1):D31–D37. 10.1093/nar/gkm766. PubMed DOI PMC
Zhu H-Y, Shang Y-J, Wei X-Y, Groenewald M, Robert V, Zhang R-P, Li A-H, Han P-J, Ji F, Li J-N, et al. Taxonomic revision of Geotrichum and Magnusiomyces, with the descriptions of five new Geotrichum species from China. Mycology 2024:1–24. 10.1080/21501203.2023.2294945. DOI
Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN, Alva V, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018:430(15):2237–2243. 10.1016/j.jmb.2017.12.007. PubMed DOI
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003:31(13):3406–3415. 10.1093/nar/gkg595. PubMed DOI PMC