An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5' UTRs and its implications for eukaryotic gene translation regulation
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23804757
PubMed Central
PMC3763539
DOI
10.1093/nar/gkt548
PII: gkt548
Knihovny.cz E-zdroje
- MeSH
- 5' nepřekládaná oblast * MeSH
- konzervovaná sekvence MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- malé podjednotky ribozomu eukaryotické chemie MeSH
- messenger RNA chemie MeSH
- molekulární evoluce * MeSH
- proteosyntéza * MeSH
- regulace genové exprese * MeSH
- RNA ribozomální 18S chemie MeSH
- RNA ribozomální 28S chemie MeSH
- sekvence nukleotidů MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5' nepřekládaná oblast * MeSH
- messenger RNA MeSH
- RNA ribozomální 18S MeSH
- RNA ribozomální 28S MeSH
There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA-rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5' untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5' UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5' UTRs of mRNAs.
Zobrazit více v PubMed
Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136:731–745. PubMed PMC
Kong J, Lasko P. Translational control in cellular and developmental processes. Nat. Rev. Genet. 2012;13:383–394. PubMed
Gebauer F, Preiss T, Hentze MW. From cis-regulatory elements to complex RNPs and back. Cold Spring Harb. Perspect. Biol. 2012;4:a012245. PubMed PMC
Hellen CU. IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry. Biochim. Biophys. Acta. 2009;1789:558–570. PubMed PMC
Matveeva OV, Shabalina SA. Intermolecular mRNA-rRNA hybridization and the distribution of potential interaction regions in murine 18S rRNA. Nucleic Acids Res. 1993;21:1007–1011. PubMed PMC
Mauro VP, Edelman GM. rRNA-like sequences occur in diverse primary transcripts: implications for the control of gene expression. Proc. Natl Acad. Sci. USA. 1997;94:422–427. PubMed PMC
Tranque P, Hu MC, Edelman GM, Mauro VP. rRNA complementarity within mRNAs: a possible basis for mRNA-ribosome interactions and translational control. Proc. Natl Acad. Sci. USA. 1998;95:12238–12243. PubMed PMC
Verrier SB, Jean-Jean O. Complementarity between the mRNA 5′ untranslated region and 18S ribosomal RNA can inhibit translation. RNA. 2000;6:584–597. PubMed PMC
Schneider R, Agol VI, Andino R, Bayard F, Cavener DR, Chappell SA, Chen JJ, Darlix JL, Dasgupta A, Donze O, et al. New ways of initiating translation in eukaryotes. Mol. Cell. Biol. 2001;21:8238–8246. PubMed PMC
Mauro VP, Edelman GM. The ribosome filter redux. Cell Cycle. 2007;6:2246–2251. PubMed PMC
Dresios J, Chappell SA, Zhou W, Mauro VP. An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes. Nat. Struct. Mol. Biol. 2006;13:30–34. PubMed
Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320:1344–1349. PubMed PMC
Grillo G, Turi A, Licciulli F, Mignone F, Liuni S, Banfi S, Gennarino VA, Horner DS, Pavesi G, Picardi E, et al. UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res. 2009;38:D75–D80. PubMed PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590–D596. PubMed PMC
Storey JD. The positive false discovery rate: A Bayesian interpretation and the q-value. Ann. Stat. 2003;31:2013–2035.
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7:539. PubMed PMC
Pruesse E, Peplies J, Glockner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 28:1823–1829. PubMed PMC
Armache JP, Jarasch A, Anger AM, Villa E, Becker T, Bhushan S, Jossinet F, Habeck M, Dindar G, Franckenberg S, et al. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-A resolution. Proc. Natl Acad. Sci. USA. 2010;107:19748–19753. PubMed PMC
Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J. Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA-ribosome and subunit-subunit interactions. Cell. 2001;107:373–386. PubMed
Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science. 2011;331:730–736. PubMed
Chandramouli P, Topf M, Menetret JF, Eswar N, Cannone JJ, Gutell RR, Sali A, Akey CW. Structure of the mammalian 80S ribosome at 8.7 A resolution. Structure. 2008;16:535–548. PubMed PMC
Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 2011;334:1524–1529. PubMed
Mauro VP, Edelman GM. The ribosome filter hypothesis. Proc. Natl Acad. Sci. USA. 2002;99:12031–12036. PubMed PMC
Hu MC, Tranque P, Edelman GM, Mauro VP. rRNA-complementarity in the 5′ untranslated region of mRNA specifying the Gtx homeodomain protein: evidence that base- pairing to 18S rRNA affects translational efficiency. Proc. Natl Acad. Sci. USA. 1999;96:1339–1344. PubMed PMC
Pestova TV, Kolupaeva VG. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 2002;16:2906–2922. PubMed PMC
Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, Algire MA, Lorsch JR, Ramakrishnan V. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol. Cell. 2007;26:41–50. PubMed
Yu Y, Abaeva IS, Marintchev A, Pestova TV, Hellen CU. Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Res. 2011;39:4851–4865. PubMed PMC
Marintchev A, Edmonds KA, Marintcheva B, Hendrickson E, Oberer M, Suzuki C, Herdy B, Sonenberg N, Wagner G. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell. 2009;136:447–460. PubMed PMC
Reduction of Ribosomal Expansion Segments in Yeast Species of the Magnusiomyces/Saprochaete Clade