The suboptimal structures find the optimal RNAs: homology search for bacterial non-coding RNAs using suboptimal RNA structures
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21193488
PubMed Central
PMC3082871
DOI
10.1093/nar/gkq1186
PII: gkq1186
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA chemie MeSH
- konformace nukleové kyseliny MeSH
- molekulární sekvence - údaje MeSH
- Mycobacterium genetika MeSH
- nekódující RNA chemie MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- Streptomyces genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 6S RNA MeSH Prohlížeč
- bakteriální RNA MeSH
- nekódující RNA MeSH
Non-coding RNAs (ncRNAs) are regulatory molecules encoded in the intergenic or intragenic regions of the genome. In prokaryotes, biocomputational identification of homologs of known ncRNAs in other species often fails due to weakly evolutionarily conserved sequences, structures, synteny and genome localization, except in the case of evolutionarily closely related species. To eliminate results from weak conservation, we focused on RNA structure, which is the most conserved ncRNA property. Analysis of the structure of one of the few well-studied bacterial ncRNAs, 6S RNA, demonstrated that unlike optimal and consensus structures, suboptimal structures are capable of capturing RNA homology even in divergent bacterial species. A computational procedure for the identification of homologous ncRNAs using suboptimal structures was created. The suggested procedure was applied to strongly divergent bacterial species and was capable of identifying homologous ncRNAs.
Zobrazit více v PubMed
Wassarman KM, Storz G. 6S RNA regulates E. coli RNA polymerase activity. Cell. 2000;101:613–623. PubMed
Tucker BJ, Breaker RR. Riboswitches as versatile gene control elements. Curr. Opin. Struct. Biol. 2005;15:342–348. PubMed
Vogel J, Sharma CM. How to find small non-coding RNAs in bacteria. Biol. Chem. 2005;386:1219–1238. PubMed
Wolfsberg TG, McEntyre J, Schuler GD. Guide to the draft human genome. Nature. 2001;409:824–826. PubMed
Gardner PP, Giegerich R. A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics. 2004;5:140. PubMed PMC
Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, et al. Rfam: updates to the RNA families database. Nucleic Acids Res. 2009;37:D136–D140. PubMed PMC
Ando Y, Asari S, Suzuma S, Yamane K, Nakamura K. Expression of a small RNA, BS203 RNA, from the yocI-yocJ intergenic region of Bacillus subtilis genome. FEMS Microbiol. Lett. 2002;207:29–33. PubMed
Suzuma S, Asari S, Bunai K, Yoshino K, Ando Y, Kakeshita H, Fujita M, Nakamura K, Yamane K. Identification and characterization of novel small RNAs in the aspS-yrvM intergenic region of the Bacillus subtilis genome. Microbiology. 2002;148:2591–2598. PubMed
Trotochaud AE, Wassarman KM. A highly conserved 6S RNA structure is required for regulation of transcription. Nat. Struct. Mol. Biol. 2005;12:313–319. PubMed
Barrick JE, Sudarsan N, Weinberg Z, Ruzzo WL, Breaker RR. 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA. 2005;11:774–784. PubMed PMC
Kingsford CL, Ayanbule K, Salzberg SL. Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol. 2007;8:R22. PubMed PMC
Korf I, Yandell M, Bedell J. BLAST. Sebastopol: O’Reilly & Associates; 2003.
Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H. Genetic Manipulation of Streptomyces – A Laboratory Manual. Norwich: The John Innes Foundation; 1985.
Krasny L, Tiserova H, Jonak J, Rejman D, Sanderova H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol. Microbiol. 2008;69:42–54. PubMed
Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res. 2003;31:439–441. PubMed PMC
Markham NR, Zuker M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 2005;33:W577–W581. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed
Hofacker IL. RNA secondary structure analysis using the Vienna RNA package. Curr. Protoc. Bioinformatics. 2004 Chapter 12, Unit 12 12. PubMed
Panek J, Bobek J, Mikulik K, Basler M, Vohradsky J. Biocomputational prediction of small non-coding RNAs in Streptomyces. BMC Genomics. 2008;9:217. PubMed PMC
Jaeger JA, Turner DH, Zuker M. Improved predictions of secondary structures for RNA. Proc. Natl Acad. Sci. USA. 1989;86:7706–7710. PubMed PMC
Tran TT, Zhou F, Marshburn S, Stead M, Kushner SR, Xu Y. De novo computational prediction of non-coding RNA genes in prokaryotic genomes. Bioinformatics. 2009;25:2897–2905. PubMed PMC
MoaB2, a newly identified transcription factor, binds to σA in Mycobacterium smegmatis
RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria
6S-Like scr3559 RNA Affects Development and Antibiotic Production in Streptomyces coelicolor
Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria