MoaB2, a newly identified transcription factor, binds to σA in Mycobacterium smegmatis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-12956S
Czech Science Foundation
22-12023S
Czech Science Foundation
23-05622S
Czech Science Foundation
LX22NPO5103
MEYS, Funded by the European Union-Next Generation EU
RVO: 86652036
Czech Academy of Sciences
PubMed
39499088
PubMed Central
PMC11656743
DOI
10.1128/jb.00066-24
Knihovny.cz E-zdroje
- Klíčová slova
- MoaB2, RNA polymerase, mycobacteria, transcription, σA,
- MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- DNA řízené RNA-polymerasy metabolismus genetika MeSH
- genetická transkripce MeSH
- krystalografie rentgenová MeSH
- Mycobacterium smegmatis * metabolismus genetika MeSH
- regulace genové exprese u bakterií * MeSH
- sigma faktor * metabolismus genetika MeSH
- transkripční faktory * metabolismus genetika MeSH
- vazba proteinů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- DNA řízené RNA-polymerasy MeSH
- sigma faktor * MeSH
- transkripční faktory * MeSH
In mycobacteria, σA is the primary sigma factor. This essential protein binds to RNA polymerase (RNAP) and mediates transcription initiation of housekeeping genes. Our knowledge about this factor in mycobacteria is limited. Here, we performed an unbiased search for interacting partners of Mycobacterium smegmatis σA. The search revealed a number of proteins; prominent among them was MoaB2. The σA-MoaB2 interaction was validated and characterized by several approaches, revealing that it likely does not require RNAP and is specific, as alternative σ factors (e.g., closely related σB) do not interact with MoaB2. The structure of MoaB2 was solved by X-ray crystallography. By immunoprecipitation and nuclear magnetic resonance, the unique, unstructured N-terminal domain of σA was identified to play a role in the σA-MoaB2 interaction. Functional experiments then showed that MoaB2 inhibits σA-dependent (but not σB-dependent) transcription and may increase the stability of σA in the cell. We propose that MoaB2, by sequestering σA, has a potential to modulate gene expression. In summary, this study has uncovered a new binding partner of mycobacterial σA, paving the way for future investigation of this phenomenon.IMPORTANCEMycobacteria cause serious human diseases such as tuberculosis and leprosy. The mycobacterial transcription machinery is unique, containing transcription factors such as RbpA, CarD, and the RNA polymerase (RNAP) core-interacting small RNA Ms1. Here, we extend our knowledge of the mycobacterial transcription apparatus by identifying MoaB2 as an interacting partner of σA, the primary sigma factor, and characterize its effects on transcription and σA stability. This information expands our knowledge of interacting partners of subunits of mycobacterial RNAP, providing opportunities for future development of antimycobacterial compounds.
Central European Institute of Technology Masaryk University Brno Czechia
Faculty of Science National Centre for Biomolecular Research Masaryk University Brno Czechia
Institute of Biotechnology of the Czech Academy of Sciences Centre BIOCEV Vestec Czechia
Institute of Microbiology of the Czech Academy of Sciences Centre BIOCEV Vestec Czechia
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czechia
Laboratory of Regulatory RNAs Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
Joseph AST, Ranjitha R, Rajan A, Shankar V. 2020. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J Infect Public Health 13:1255–1264. doi:10.1016/j.jiph.2020.06.023 PubMed DOI
Zhu M, Dai X. 2018. On the intrinsic constraint of bacterial growth rate: M. tuberculosis's view of the protein translation capacity. Crit Rev Microbiol 44:455–464. doi:10.1080/1040841X.2018.1425672 PubMed DOI
Reyrat JM, Kahn D. 2001. Mycobacterium smegmatis: an absurd model for tuberculosis? Trends Microbiol 9:472–474. doi:10.1016/s0966-842x(01)02168-0 PubMed DOI
Darst SA. 2001. Bacterial RNA polymerase. Curr Opin Struct Biol 11:155–162. doi:10.1016/s0959-440x(00)00185-8 PubMed DOI
Paget MS. 2015. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules 5:1245–1265. doi:10.3390/biom5031245 PubMed DOI PMC
Chauhan R, Ravi J, Datta P, Chen T, Schnappinger D, Bassler KE, Balázsi G, Gennaro ML. 2016. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis. Nat Commun 7:11062. doi:10.1038/ncomms11062 PubMed DOI PMC
Mitchell JE, Oshima T, Piper SE, Webster CL, Westblade LF, Karimova G, Ladant D, Kolb A, Hobman JL, Busby SJW, Lee DJ. 2007. The Escherichia coli regulator of sigma 70 protein, Rsd, can up-regulate some stress-dependent promoters by sequestering sigma 70. J Bacteriol 189:3489–3495. doi:10.1128/JB.00019-07 PubMed DOI PMC
Rodrigue S, Provvedi R, Jacques P-E, Gaudreau L, Manganelli R. 2006. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30:926–941. doi:10.1111/j.1574-6976.2006.00040.x PubMed DOI
Waagmeester A, Thompson J, Reyrat JM. 2005. Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis. Trends Microbiol 13:505–509. doi:10.1016/j.tim.2005.08.009 PubMed DOI
Manganelli R, Dubnau E, Tyagi S, Kramer FR, Smith I. 1999. Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol 31:715–724. doi:10.1046/j.1365-2958.1999.01212.x PubMed DOI
Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731. doi:10.1046/j.1365-2958.2002.02779.x PubMed DOI
Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704. doi:10.1084/jem.20030846 PubMed DOI PMC
Hu Y, Coates ARM. 1999. Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J Bacteriol 181:469–476. doi:10.1128/JB.181.2.469-476.1999 PubMed DOI PMC
Morichaud Z, Trapani S, Vishwakarma RK, Chaloin L, Lionne C, Lai-Kee-Him J, Bron P, Brodolin K. 2023. Structural basis of the mycobacterial stress-response RNA polymerase auto-inhibition via oligomerization. Nat Commun 14:484. doi:10.1038/s41467-023-36113-y PubMed DOI PMC
Hurst-Hess K, Biswas R, Yang Y, Rudra P, Lasek-Nesselquist E, Ghosh P. 2019. Mycobacterial SigA and SigB cotranscribe essential housekeeping genes during exponential growth. MBio 10:e00273-19. doi:10.1128/mBio.00273-19 PubMed DOI PMC
Bae B, Davis E, Brown D, Campbell EA, Wigneshweraraj S, Darst SA. 2013. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1. Proc Natl Acad Sci U S A 110:19772–19777. doi:10.1073/pnas.1314576110 PubMed DOI PMC
Schwartz EC, Shekhtman A, Dutta K, Pratt MR, Cowburn D, Darst S, Muir TW. 2008. A full-length group 1 bacterial sigma factor adopts a compact structure incompatible with DNA binding. Chem Biol 15:1091–1103. doi:10.1016/j.chembiol.2008.09.008 PubMed DOI PMC
Zachrdla M, Padrta P, Rabatinová A, Šanderová H, Barvík I, Krásný L, Žídek L. 2017. Solution structure of domain 1.1 of the σA factor from Bacillus subtilis is preformed for binding to the RNA polymerase core. J Biol Chem 292:11610–11617. doi:10.1074/jbc.M117.784074 PubMed DOI PMC
Hubin EA, Lilic M, Darst SA, Campbell EA. 2017. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures. Nat Commun 8:16072. doi:10.1038/ncomms16072 PubMed DOI PMC
Lane WJ, Darst SA. 2010. Molecular evolution of multisubunit RNA polymerases: sequence analysis. J Mol Biol 395:671–685. doi:10.1016/j.jmb.2009.10.062 PubMed DOI PMC
Singha B, Behera D, Khan MZ, Singh NK, Sowpati DT, Gopal B, Nandicoori VK. 2023. The unique N-terminal region of Mycobacterium tuberculosis sigma factor A plays a dominant role in the essential function of this protein. J Biol Chem 299:102933. doi:10.1016/j.jbc.2023.102933 PubMed DOI PMC
Srivastava DB, Leon K, Osmundson J, Garner AL, Weiss LA, Westblade LF, Glickman MS, Landick R, Darst SA, Stallings CL, Campbell EA. 2013. Structure and function of CarD, an essential mycobacterial transcription factor. Proc Natl Acad Sci U S A 110:12619–12624. doi:10.1073/pnas.1308270110 PubMed DOI PMC
Dey A, Verma AK, Chatterji D. 2010. Role of an RNA polymerase interacting protein, MsRbpA, from Mycobacterium smegmatis in phenotypic tolerance to rifampicin. Microbiol (Reading) 156:873–883. doi:10.1099/mic.0.033670-0 PubMed DOI
Hubin EA, Tabib-Salazar A, Humphrey LJ, Flack JE, Olinares PDB, Darst SA, Campbell EA, Paget MS. 2015. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA. Proc Natl Acad Sci U S A 112:7171–7176. doi:10.1073/pnas.1504942112 PubMed DOI PMC
Rammohan J, Ruiz Manzano A, Garner AL, Prusa J, Stallings CL, Galburt EA. 2016. Cooperative stabilization of Mycobacterium tuberculosis rrnAP3 promoter open complexes by RbpA and CarD. Nucleic Acids Res 44:7304–7313. doi:10.1093/nar/gkw577 PubMed DOI PMC
Hubin EA, Fay A, Xu C, Bean JM, Saecker RM, Glickman MS, Darst SA, Campbell EA. 2017. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. Elife 6:e22520. doi:10.7554/eLife.22520 PubMed DOI PMC
Sudalaiyadum Perumal A, Vishwakarma RK, Hu Y, Morichaud Z, Brodolin K. 2018. RbpA relaxes promoter selectivity of M. tuberculosis RNA polymerase. Nucleic Acids Res 46:10106–10118. doi:10.1093/nar/gky714 PubMed DOI PMC
Hu Y, Morichaud Z, Perumal AS, Roquet-Baneres F, Brodolin K. 2014. Mycobacterium RbpA cooperates with the stress-response σB subunit of RNA polymerase in promoter DNA unwinding. Nucleic Acids Res 42:10399–10408. doi:10.1093/nar/gku742 PubMed DOI PMC
Hu Y, Morichaud Z, Chen S, Leonetti JP, Brodolin K. 2012. Mycobacterium tuberculosis RbpA protein is a new type of transcriptional activator that stabilizes the σ A -containing RNA polymerase holoenzyme. Nucleic Acids Res 40:6547–6557. doi:10.1093/nar/gks346 PubMed DOI PMC
Sanishvili R, Beasley S, Skarina T, Glesne D, Joachimiak A, Edwards A, Savchenko A. 2004. The crystal structure of Escherichia coli MoaB suggests a probable role in molybdenum cofactor synthesis. J Biol Chem 279:42139–42146. doi:10.1074/jbc.M407694200 PubMed DOI PMC
Kozmin SG, Schaaper RM. 2013. Genetic characterization of moaB mutants of Escherichia coli. Res Microbiol 164:689–694. doi:10.1016/j.resmic.2013.05.001 PubMed DOI PMC
Bevers LE, Hagedoorn PL, Santamaria-Araujo JA, Magalon A, Hagen WR, Schwarz G. 2008. Function of MoaB proteins in the biosynthesis of the molybdenum and tungsten cofactors. Biochemistry 47:949–956. doi:10.1021/bi7020487 PubMed DOI
Williams MJ, Kana BD, Mizrahi V. 2011. Functional analysis of molybdopterin biosynthesis in mycobacteria identifies a fused molybdopterin synthase in Mycobacterium tuberculosis. J Bacteriol 193:98–106. doi:10.1128/JB.00774-10 PubMed DOI PMC
Kapopoulou A, Lew JM, Cole ST. 2011. The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis (Edinb) 91:8–13. doi:10.1016/j.tube.2010.09.006 PubMed DOI
Pisu D, Provvedi R, Espinosa DM, Payan JB, Boldrin F, Palù G, Hernandez-Pando R, Manganelli R. 2017. The alternative sigma factors SigE and SigB are involved in tolerance and persistence to antitubercular drugs. Antimicrob Agents Chemother 61:e01596-17. doi:10.1128/AAC.01596-17 PubMed DOI PMC
Oh Y, Lee H-I, Jeong J-A, Kim S, Oh J-I. 2022. Activation of the SigE-SigB signaling pathway by inhibition of the respiratory electron transport chain and its effect on rifampicin resistance in Mycobacterium smegmatis. J Microbiol 60:935–947. doi:10.1007/s12275-022-2202-0 PubMed DOI
Hecker M, Pané-Farré J, Völker U. 2007. SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 61:215–236. doi:10.1146/annurev.micro.61.080706.093445 PubMed DOI
Vohradsky J, Schwarz M, Ramaniuk O, Ruiz-Larrabeiti O, Vaňková Hausnerová V, Šanderová H, Krásný L. 2021. Kinetic modeling and meta-analysis of the Bacillus subtilis SigB regulon during spore germination and outgrowth. Microorganisms 9:112. doi:10.3390/microorganisms9010112 PubMed DOI PMC
Provvedi R, Kocíncová D, Donà V, Euphrasie D, Daffé M, Etienne G, Manganelli R, Reyrat JM. 2008. SigF controls carotenoid pigment production and affects transformation efficiency and hydrogen peroxide sensitivity in Mycobacterium smegmatis. J Bacteriol 190:7859–7863. doi:10.1128/JB.00714-08 PubMed DOI PMC
Hümpel A, Gebhard S, Cook GM, Berney M. 2010. The SigF regulon in Mycobacterium smegmatis reveals roles in adaptation to stationary phase, heat, and oxidative stress. J Bacteriol 192:2491–2502. doi:10.1128/JB.00035-10 PubMed DOI PMC
Singh AK, Dutta D, Singh V, Srivastava V, Biswas RK, Singh BN. 2015. Characterization of Mycobacterium smegmatis sigF mutant and its regulon: overexpression of SigF antagonist (MSMEG_1803) in M. smegmatis mimics sigF mutant phenotype, loss of pigmentation, and sensitivity to oxidative stress. Microbiologyopen 4:896–916. doi:10.1002/mbo3.288 PubMed DOI PMC
Singh AK, Singh BN. 2009. Differential expression of sigH paralogs during growth and under different stress conditions in Mycobacterium smegmatis. J Bacteriol 191:2888–2893. doi:10.1128/JB.01773-08 PubMed DOI PMC
Padrick SB, Brautigam CA. 2011. Evaluating the stoichiometry of macromolecular complexes using multisignal sedimentation velocity. Methods 54:39–55. doi:10.1016/j.ymeth.2011.01.002 PubMed DOI PMC
Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW, et al. . 2015. Increasing the structural coverage of tuberculosis drug targets. Tuberculosis (Edinb) 95:142–148. doi:10.1016/j.tube.2014.12.003 PubMed DOI PMC
Schwarz G, Schrader N, Mendel RR, Hecht HJ, Schindelin H. 2001. Crystal structures of human gephyrin and plant Cnx1 G domains: comparative analysis and functional implications. J Mol Biol 312:405–418. doi:10.1006/jmbi.2001.4952 PubMed DOI
Havarushka N, Fischer-Schrader K, Lamkemeyer T, Schwarz G. 2014. Structural basis of thermal stability of the tungsten cofactor synthesis protein MoaB from Pyrococcus furiosus. PLoS One 9:e86030. doi:10.1371/journal.pone.0086030 PubMed DOI PMC
Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen J, Liles K, Chun M, Li P, Gohara DW, Dolinsky T, Konecny R, Koes DR, Nielsen JE, Head-Gordon T, Geng W, Krasny R, Wei GW, Holst MJ, McCammon JA, Baker NA. 2018. Improvements to the APBS biomolecular solvation software suite. Protein Sci 27:112–128. doi:10.1002/pro.3280 PubMed DOI PMC
Antonyuk SV, Strange RW, Ellis MJ, Bessho Y, Kuramitsu S, Shinkai A, Yokoyama S, Hasnain SS. 2009. Structure of hypothetical Mo-cofactor biosynthesis protein B (ST2315) from Sulfolobus tokodaii. Acta Cryst Sect F Struct Biol Cryst Commun 65:1200–1203. doi:10.1107/S1744309109043772 PubMed DOI PMC
Holm L. 2022. Dali server: structural unification of protein families. Nucleic Acids Res 50:W210–W215. doi:10.1093/nar/gkac387 PubMed DOI PMC
Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G. 2004. Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature New Biol 430:803–806. doi:10.1038/nature02681 PubMed DOI
Xiang S, Nichols J, Rajagopalan KV, Schindelin H. 2001. The crystal structure of Escherichia coli MoeA and its relationship to the multifunctional protein gephyrin. Structure 9:299–310. doi:10.1016/s0969-2126(01)00588-3 PubMed DOI
Singh RK, Jaiswal LK, Nayak T, Rawat RS, Kumar S, Rai SN, Gupta A. 2022. Expression, purification, and in silico characterization of Mycobacterium smegmatis alternative sigma factor SigB. Dis Markers 2022:7475704. doi:10.1155/2022/7475704 PubMed DOI PMC
Bodenhausen G, Ruben DJ. 1980. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189. doi:10.1016/0009-2614(80)80041-8 DOI
Sklenar V, Piotto M, Leppik R, Saudek V. 1993. Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J Magn Reson A 102:241–245. doi:10.1006/jmra.1993.1098 DOI
Rock JM, Hopkins FF, Chavez A, Diallo M, Chase MR, Gerrick ER, Pritchard JR, Church GM, Rubin EJ, Sassetti CM, Schnappinger D, Fortune SM. 2017. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol 2:1–9. doi:10.1038/nmicrobiol.2016.274 PubMed DOI PMC
Gomez M, Doukhan L, Nair G, Smith I. 1998. sigA is an essential gene in Mycobacterium smegmatis. Mol Microbiol 29:617–628. doi:10.1046/j.1365-2958.1998.00960.x PubMed DOI
Vaňková Hausnerová V, Shoman M, Kumar D, Schwarz M, Modrák M, Jirát Matějčková J, Mikesková E, Neva S, Herrmannová A, Šiková M, Halada P, Novotná I, Pajer P, Valášek LS, Převorovský M, Krásný L, Hnilicová J. 2024. RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria. Nucleic Acids Res 52:4604–4626. doi:10.1093/nar/gkae081 PubMed DOI PMC
Kouba T, Pospíšil J, Hnilicová J, Šanderová H, Barvík I, Krásný L. 2019. The core and holoenzyme forms of RNA polymerase from Mycobacterium smegmatis. J Bacteriol 201:e00583-18. doi:10.1128/JB.00583-18 PubMed DOI PMC
Llamas A, Otte T, Multhaup G, Mendel RR, Schwarz G. 2006. The mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly. J Biol Chem 281:18343–18350. doi:10.1074/jbc.M601415200 PubMed DOI
Leimkühler S. 2020. The biosynthesis of the molybdenum cofactors in Escherichia coli. Environ Microbiol 22:2007–2026. doi:10.1111/1462-2920.15003 PubMed DOI
Giddey AD, de Kock E, Nakedi KC, Garnett S, Nel AJM, Soares NC, Blackburn JM. 2017. A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations. Sci Rep 7:43858. doi:10.1038/srep43858 PubMed DOI PMC
Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912. doi:10.1016/s0092-8674(01)00286-0 PubMed DOI
Lin W, Mandal S, Degen D, Liu Y, Ebright YW, Li S, Feng Y, Zhang Y, Mandal S, Jiang Y, Liu S, Gigliotti M, Talaue M, Connell N, Das K, Arnold E, Ebright RH. 2017. Structural basis of Mycobacterium tuberculosis transcription and transcription inhibition. Mol Cell 66:169–179. doi:10.1016/j.molcel.2017.03.001 PubMed DOI PMC
Sudzinová P, Šanderová H, Koval’ T, Skálová T, Borah N, Hnilicová J, Kouba T, Dohnálek J, Krásný L. 2023. What the Hel: recent advances in understanding rifampicin resistance in bacteria. FEMS Microbiol Rev 47:1–9. doi:10.1093/femsre/fuac051 PubMed DOI PMC
White MJ, Savaryn JP, Bretl DJ, He H, Penoske RM, Terhune SS, Zahrt TC. 2011. The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS One 6:e18175. doi:10.1371/journal.pone.0018175 PubMed DOI PMC
White MJ, He H, Penoske RM, Twining SS, Zahrt TC. 2010. PepD participates in the mycobacterial stress response mediated through MprAB and SigE. J Bacteriol 192:1498–1510. doi:10.1128/JB.01167-09 PubMed DOI PMC
Hnilicová J, Jirát Matějčková J, Šiková M, Pospíšil J, Halada P, Pánek J, Krásný L. 2014. Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res 42:11763–11776. doi:10.1093/nar/gku793 PubMed DOI PMC
Jishage M, Ishihama A. 1999. Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D. J Bacteriol 181:3768–3776. doi:10.1128/JB.181.12.3768-3776.1999 PubMed DOI PMC
Patikoglou GA, Westblade LF, Campbell EA, Lamour V, Lane WJ, Darst SA. 2007. Crystal structure of the Escherichia coli regulator of σ70, Rsd, in complex with σ70 domain 4. J Mol Biol 372:649–659. doi:10.1016/j.jmb.2007.06.081 PubMed DOI PMC
Hofmann N, Wurm R, Wagner R. 2011. The E. coli anti-sigma factor Rsd: studies on the specificity and regulation of its expression. PLoS One 6:e19235. doi:10.1371/journal.pone.0019235 PubMed DOI PMC
Lal A, Krishna S, Seshasayee ASN. 2018. Regulation of global transcription in Escherichia coli by Rsd and 6S RNA. G3 (Bethesda) 8:2079–2089. doi:10.1534/g3.118.200265 PubMed DOI PMC
Hengge R. 2009. Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli. Res Microbiol 160:667–676. doi:10.1016/j.resmic.2009.08.014 PubMed DOI
Vaňková Hausnerová V, Marvalová O, Šiková M, Shoman M, Havelková J, Kambová M, Janoušková M, Kumar D, Halada P, Schwarz M, Krásný L, Hnilicová J, Pánek J. 2022. Ms1 RNA interacts with the RNA polymerase core in Streptomyces coelicolor and was identified in majority of actinobacteria using a linguistic gene synteny search. Front Microbiol 13:848536. doi:10.3389/fmicb.2022.848536 PubMed DOI PMC
Šiková M, Janoušková M, Ramaniuk O, Páleníková P, Pospíšil J, Bartl P, Suder A, Pajer P, Kubičková P, Pavliš O, Hradilová M, Vítovská D, Šanderová H, Převorovský M, Hnilicová J, Krásný L. 2019. Ms1 RNA increases the amount of RNA polymerase in Mycobacterium smegmatis. Mol Microbiol 111:354–372. doi:10.1111/mmi.14159 PubMed DOI
van Kessel JC, Hatfull GF. 2008. Mycobacterial recombineering. Methods Mol Biol 435:203–215. doi:10.1007/978-1-59745-232-8_15 PubMed DOI
Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR Jr. 1990. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919. doi:10.1111/j.1365-2958.1990.tb02040.x PubMed DOI
Shenkerman Y, Elharar Y, Vishkautzan M, Gur E. 2014. Efficient and simple generation of unmarked gene deletions in Mycobacterium smegmatis. Gene 533:374–378. doi:10.1016/j.gene.2013.09.082 PubMed DOI
van Kessel JC, Hatfull GF. 2007. Recombineering in Mycobacterium tuberculosis. Nat Methods 4:147–152. doi:10.1038/nmeth996 PubMed DOI
Choudhary E, Thakur P, Pareek M, Agarwal N. 2015. Gene silencing by CRISPR interference in mycobacteria. Nat Commun 6:1–11. doi:10.1038/ncomms7267 PubMed DOI
Kouba T, Koval’ T, Sudzinová P, Pospíšil J, Brezovská B, Hnilicová J, Šanderová H, Janoušková M, Šiková M, Halada P, Sýkora M, Barvík I, Nováček J, Trundová M, Dušková J, Skálová T, Chon Ur, Murakami KS, Dohnálek J, Krásný L. 2020. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat Commun 11:6419. doi:10.1038/s41467-020-20158-4 PubMed DOI PMC
Currinn H, Guscott B, Balklava Z, Rothnie A, Wassmer T. 2016. APP controls the formation of PI(3,5)P(2) vesicles through its binding of the PIKfyve complex. Cell Mol Life Sci 73:393–408. doi:10.1007/s00018-015-1993-0 PubMed DOI PMC
Unger T, Jacobovitch Y, Dantes A, Bernheim R, Peleg Y. 2010. Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 172:34–44. doi:10.1016/j.jsb.2010.06.016 PubMed DOI
Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. doi:10.1016/s0022-2836(83)80284-8 PubMed DOI
Goedhart J, Luijsterburg MS. 2020. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci Rep 10:20560. doi:10.1038/s41598-020-76603-3 PubMed DOI PMC
Deutsch EW, Bandeira N, Sharma V, Perez-Riverol Y, Carver JJ, Kundu DJ, García-Seisdedos D, Jarnuczak AF, Hewapathirana S, Pullman BS, Wertz J, Sun Z, Kawano S, Okuda S, Watanabe Y, Hermjakob H, MacLean B, MacCoss MJ, Zhu Y, Ishihama Y, Vizcaíno JA. 2020. The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res 48:D1145–D1152. doi:10.1093/nar/gkz984 PubMed DOI PMC
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaíno JA. 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543–D552. doi:10.1093/nar/gkab1038 PubMed DOI PMC
Ross W, Thompson JF, Newlands JT, Gourse RL. 1990. E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J 9:3733–3742. doi:10.1002/j.1460-2075.1990.tb07586.x PubMed DOI PMC
Qi Y, Hulett FM. 1998. PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 28:1187–1197. doi:10.1046/j.1365-2958.1998.00882.x PubMed DOI
Krásný L, Gourse RL. 2004. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J 23:4473–4483. doi:10.1038/sj.emboj.7600423 PubMed DOI PMC
Pánek J, Krásny L, Bobek J, Jezková E, Korelusová J, Vohradsky J. 2011. The suboptimal structures find the optimal RNAs: homology search for bacterial non-coding RNAs using suboptimal RNA structures. Nucleic Acids Res 39:3418–3426. doi:10.1093/nar/gkq1186 PubMed DOI PMC
Leslie AGW, Powell HR. 2007. Processing diffraction data with mosflm, p 41–51
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS. 2011. Overview of the CCP4 suite and current developments. Acta Cryst D Biol Cryst 67:235–242. doi:10.1107/S0907444910045749 PubMed DOI PMC
Vagin A, Teplyakov A. 2010. Molecular replacement with MOLREP. Acta Cryst D Biol Cryst 66:22–25. doi:10.1107/S0907444909042589 PubMed DOI
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst D Biol Cryst 67:355–367. doi:10.1107/S0907444911001314 PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501. doi:10.1107/S0907444910007493 PubMed DOI PMC
Wittekind M, Mueller L. 1993. HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J Magn Reson B 101:201–205. doi:10.1006/jmrb.1993.1033 DOI
Grzesiek S, Bax A. 1992. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114:6291–6293. doi:10.1021/ja00042a003 DOI
Marion D, Driscoll PC, Kay LE, Wingfield PT, Bax A, Gronenborn AM, Clore GM. 1989. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry 28:6150–6156. doi:10.1021/bi00441a004 PubMed DOI
Zuiderweg ERP, Fesik SW. 1989. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 28:2387–2391. doi:10.1021/bi00432a008 PubMed DOI
Kazimierczuk K, Zawadzka-Kazimierczuk A, Koźmiński W. 2010. Non-uniform frequency domain for optimal exploitation of non-uniform sampling. J Magn Reson 205:286–292. doi:10.1016/j.jmr.2010.05.012 PubMed DOI
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. 1995. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. doi:10.1007/BF00197809 PubMed DOI
Lee W, Tonelli M, Markley JL. 2015. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327. doi:10.1093/bioinformatics/btu830 PubMed DOI PMC
Schuck P. 2000. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78:1606–1619. doi:10.1016/S0006-3495(00)76713-0 PubMed DOI PMC
Philo JS. 2023. SEDNTERP: a calculation and database utility to aid interpretation of analytical ultracentrifugation and light scattering data. Eur Biophys J 52:233–266. doi:10.1007/s00249-023-01629-0 PubMed DOI
Brautigam CA. 2015. Calculations and publication-quality illustrations for analytical ultracentrifugation data. Meth Enzymol 562:109–133. doi:10.1016/bs.mie.2015.05.001 PubMed DOI
Balbo A, Minor KH, Velikovsky CA, Mariuzza RA, Peterson CB, Schuck P. 2005. Studying multiprotein complexes by multisignal sedimentation velocity analytical ultracentrifugation. Proc Natl Acad Sci U S A 102:81–86. doi:10.1073/pnas.0408399102 PubMed DOI PMC
Schuck P. 2003. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem 320:104–124. doi:10.1016/s0003-2697(03)00289-6 PubMed DOI