Kinetic Modeling and Meta-Analysis of the Bacillus subtilis SigB Regulon during Spore Germination and Outgrowth

. 2021 Jan 05 ; 9 (1) : . [epub] 20210105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33466511

Grantová podpora
LM2018131 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001777 European Regional Development Fund
20-12109S Grantová Agentura České Republiky
POS_2019_1_0033 Basque Government

Odkazy

PubMed 33466511
PubMed Central PMC7824861
DOI 10.3390/microorganisms9010112
PII: microorganisms9010112
Knihovny.cz E-zdroje

The exponential increase in the number of conducted studies combined with the development of sequencing methods have led to an enormous accumulation of partially processed experimental data in the past two decades. Here, we present an approach using literature-mined data complemented with gene expression kinetic modeling and promoter sequence analysis. This approach allowed us to identify the regulon of Bacillus subtilis sigma factor SigB of RNA polymerase (RNAP) specifically expressed during germination and outgrowth. SigB is critical for the cell's response to general stress but is also expressed during spore germination and outgrowth, and this specific regulon is not known. This approach allowed us to (i) define a subset of the known SigB regulon controlled by SigB specifically during spore germination and outgrowth, (ii) identify the influence of the promoter sequence binding motif organization on the expression of the SigB-regulated genes, and (iii) suggest additional sigma factors co-controlling other SigB-dependent genes. Experiments then validated promoter sequence characteristics necessary for direct RNAP-SigB binding. In summary, this work documents the potential of computational approaches to unravel new information even for a well-studied system; moreover, the study specifically identifies the subset of the SigB regulon, which is activated during germination and outgrowth.

Zobrazit více v PubMed

Paget M.S. Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution. Biomolecules. 2015;5:1245. doi: 10.3390/biom5031245. PubMed DOI PMC

Loskot P., Atitey K., Mihaylova L. Comprehensive Review of Models and Methods for Inferences in Bio-Chemical Reaction Networks. Front. Genet. 2019;10:549. doi: 10.3389/fgene.2019.00549. PubMed DOI PMC

Wang Y.R., Huang H. Review on statistical methods for gene network reconstruction using expression data. J. Theor. Biol. 2014;362:53–61. doi: 10.1016/j.jtbi.2014.03.040. PubMed DOI

Margolin A.A., Nemenman I., Basso K., Wiggins C., Stolovitzky G., Dalla-Favera R., Califano A. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinform. 2006;7:1. doi: 10.1186/1471-2105-7-S1-S7. PubMed DOI PMC

Yeung K.Y., Dombek K.M., Lo K., Mittler J.E., Zhu J., Schadt E.E., Bumgarner R., Raftery A.E. Construction of regulatory networks using expression time-series data of a genotyped population. Proc. Natl. Acad. Sci. USA. 2011;108:19436–19441. doi: 10.1073/pnas.1116442108. PubMed DOI PMC

Modrak M., Vohradsky J. Genexpi: A toolset for identifying regulons and validating gene regulatory networks using time-course expression data. BMC Bioinform. 2018;19:137. doi: 10.1186/s12859-018-2138-x. PubMed DOI PMC

De Smet R., Marchal K. Advantages and limitations of current network inference methods. Nat. Rev. Genet. 2010;8:717–729. doi: 10.1038/nrmicro2419. PubMed DOI

Tiwari A., Balázsi G., Gennaro M.L., Igoshin O.A. The interplay of multiple feedback loops with post-translational kinetics results in bistability of mycobacterial stress response. Phys. Biol. 2010;7:036005. doi: 10.1088/1478-3975/7/3/036005. PubMed DOI PMC

Chauhan R., Ravi J., Datta P., Chen T., Schnappinger D., Bassler T.C.K.E., Balázsi G., Gennaro M.L. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis. Nat. Commun. 2016;7:11062. doi: 10.1038/ncomms11062. PubMed DOI PMC

Nannapaneni P., Hertwig F., Depke M., Hecker M., Mäder U., Völker U., Steil L., Van Hijum S.A.F.T. Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and random forest classification. Microbiology. 2012;158:696–707. doi: 10.1099/mic.0.055434-0. PubMed DOI

MacQuarrie K.L., Fong A.P., Morse R.H., Tapscott S.J. Genome-wide transcription factor binding: Beyond direct target regulation. Trends Genet. 2011;27:141–148. doi: 10.1016/j.tig.2011.01.001. PubMed DOI PMC

Xing Y., Harper W.F. Bacillus spore awakening: Recent discoveries and technological developments. Curr. Opin. Biotechnol. 2020;64:110–115. doi: 10.1016/j.copbio.2019.12.024. PubMed DOI

Shorenstein R.G., Losick R. Purification and properties of the sigma subunit of ribonucleic acid polymerase from vegetative Bacillus subtilis. J. Biol. Chem. 1973;248:6163–6169. PubMed

Price C.W., Doi R.H. Genetic mapping of rpoD implicates the major sigma factor of Bacillus subtilis RNA polymerase in sporulation initiation. Mol. Genet. Genom. 1985;201:88–95. doi: 10.1007/BF00397991. PubMed DOI

Haldenwang W.G. The sigma factors of Bacillus subtilis. Microbiol. Rev. 1995;59:1–30. doi: 10.1128/MR.59.1.1-30.1995. PubMed DOI PMC

Matsumoto T., Nakanishi K., Asai K., Sadaie Y. Transcriptional analysis of the ylaABCD operon of Bacillus subtilis encoding a sigma factor of extracytoplasmic function family. Genes Genet. Syst. 2005;80:385–393. doi: 10.1266/ggs.80.385. PubMed DOI

Helmann J.D. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Curr. Opin. Microbiol. 2016;30:122–132. doi: 10.1016/j.mib.2016.02.002. PubMed DOI PMC

Nicolas P., Mäder U., Dervyn E., Rochat T., LeDuc A., Pigeonneau N., Bidnenko E., Marchadier E., Hoebeke M., Aymerich S., et al. Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis. Science. 2012;335:1103–1106. doi: 10.1126/science.1206848. PubMed DOI

McDonnell E.G., Wood H., Devine K.M., McConnell D.J. Genetic control of bacterial suicide: Regulation of the induction of PBSX in Bacillus subtilis. J. Bacteriol. 1994;176:5820–5830. doi: 10.1128/JB.176.18.5820-5830.1994. PubMed DOI PMC

Hecker M., Pané-Farré J., Uwe V. SigB-Dependent General Stress Response inBacillus subtilisand Related Gram-Positive Bacteria. Annu. Rev. Microbiol. 2007;61:215–236. doi: 10.1146/annurev.micro.61.080706.093445. PubMed DOI

Wise A.A., Price C.W. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals. J. Bacteriol. 1995;177:123–133. doi: 10.1128/JB.177.1.123-133.1995. PubMed DOI PMC

Locke J.C.W., Young J.W., Fontes M., Jiménez M.J.H., Elowitz M.B. Stochastic Pulse Regulation in Bacterial Stress Response. Science. 2011;334:366–369. doi: 10.1126/science.1208144. PubMed DOI PMC

Keijser B.J.F., Ter Beek A., Rauwerda H., Schuren F., Montijn R., Van Der Spek H., Brul S. Analysis of Temporal Gene Expression during Bacillus subtilis Spore Germination and Outgrowth. J. Bacteriol. 2007;189:3624–3634. doi: 10.1128/JB.01736-06. PubMed DOI PMC

Michna R.H., Commichau F.M., Tödter D., Zschiedrich C.P., Stülke J. SubtiWiki—A database for the model organism Bacillus subtilis that links pathway, interaction and expression information. Nucleic Acids Res. 2014;42:D692–D698. doi: 10.1093/nar/gkt1002. PubMed DOI PMC

Price C.W., Fawcett P., Cérémonie H., Su N., Murphy C.K., Youngman P. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol. Microbiol. 2002;41:757–774. doi: 10.1046/j.1365-2958.2001.02534.x. PubMed DOI

Helmann J.D., Wu M.F.W., Kobel P.A., Gamo F.-J., Wilson M., Morshedi M.M., Navre M., Paddon C. Global Transcriptional Response of Bacillus subtilis to Heat Shock. J. Bacteriol. 2001;183:7318–7328. doi: 10.1128/JB.183.24.7318-7328.2001. PubMed DOI PMC

Petersohn A., Brigulla M., Haas S., Jörg D., Völker U., Hecker M. Global Analysis of the General Stress Response of Bacillus subtilis Global Analysis of the General Stress Response of Bacillus subtilis. J. Bacteriol. 2001;183:5617–5631. doi: 10.1128/JB.183.19.5617-5631.2001. PubMed DOI PMC

Arrieta-Ortiz M.L., Hafemeister C., Bate A.R., Chu T., Greenfield A., Shuster B., Barry S.N., Gallitto M., Liu B., Kacmarczyk T., et al. An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network. Mol. Syst. Biol. 2015;11:839. doi: 10.15252/msb.20156236. PubMed DOI PMC

Helmann J.D., Márquez L.M., Chamberlin M.J. Cloning, sequencing, and disruption of the Bacillus subtilis sigma 28 gene. J. Bacteriol. 1988;170:1568–1574. doi: 10.1128/JB.170.4.1568-1574.1988. PubMed DOI PMC

Petersohn A., Bernhardt J., Gerth U., Höper D., Koburger T., Völker U., Hecker M., Bernhardt R.G., Gerth U.L.F. Identification of ς B -Dependent Genes in Bacillus subtilis Using a Promoter Consen-sus-Directed Search and Oligonucleotide Hybridization Identification of B -Dependent Genes in Bacillus subtilis Using a Promoter Consensus-Directed Search and Oligonucleo. J. Bacteriol. 1999;181:5718–5724. doi: 10.1128/JB.181.18.5718-5724.1999. PubMed DOI PMC

Zhu B., Stülke J. SubtiWiki in 2018: From genes and proteins to functional network annotation of the model organism Bacillus subtilis. Nucleic Acids Res. 2018;46:D743–D748. doi: 10.1093/nar/gkx908. PubMed DOI PMC

Vohradsky J. Neural network model of gene expression. FASEB J. 2001;15:846–854. doi: 10.1096/fj.00-0361com. PubMed DOI

To C.C., Vohradsky J. Supervised inference of gene-regulatory networks. BMC Bioinform. 2008;9:2. doi: 10.1186/1471-2105-9-2. PubMed DOI PMC

Vu T.T., Vohradsky J. Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucleic Acids Res. 2006;35:279–287. doi: 10.1093/nar/gkl1001. PubMed DOI PMC

Vu T.T., Vohradsky J. Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data. Genomics. 2009;93:426–433. doi: 10.1016/j.ygeno.2009.01.006. PubMed DOI

Ramaniuk O., Černý M., Krásný L., Vohradsky J. Kinetic modelling and meta-analysis of the B. subtilis SigA regulatory network during spore germination and outgrowth. Biochim. Biophys. Acta Bioenerg. 2017;1860:894–904. doi: 10.1016/j.bbagrm.2017.06.003. PubMed DOI

Rabatinová A., Šanderová H., Matějčková J.J., Korelusová J., Sojka L., Barvík I., Papoušková V., Sklenář V., Žídek L., Krásný L. The Subunit of RNA Polymerase Is Required for Rapid Changes in Gene Expression and Competitive Fitness of the Cell. J. Bacteriol. 2013;195:2603–2611. doi: 10.1128/JB.00188-13. PubMed DOI PMC

Qi Y., Hulett F.M. PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 1998;28:1187–1197. doi: 10.1046/j.1365-2958.1998.00882.x. PubMed DOI

De Saro F.J.L., Woody A.-Y.M., Helmann J.D. Structural Analysis of theBacillus subtilisδ Factor: A protein Polyanion which Displaces RNA from RNA Polymerase. J. Mol. Biol. 1995;252:189–202. doi: 10.1006/jmbi.1995.0487. PubMed DOI

Sojka L., Kouba T., Barvík I., Šanderová H., Maderová Z., Jonák J., Krásný L. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res. 2011;39:4598–4611. doi: 10.1093/nar/gkr032. PubMed DOI PMC

Meyer F.M., Jules M., Mehne F.M.P., Le Coq M., Landmann J.J., Görke B., Aymerich S., Stülke J. Malate-Mediated Carbon Catabolite Repression in Bacillus subtilis Involves the HPrK/CcpA Pathway. J. Bacteriol. 2011;193:6939–6949. doi: 10.1128/JB.06197-11. PubMed DOI PMC

Saxild H.H., Brunstedt K., Nielsen K.I., Jarmer H., Nygaard P. Definition of the Bacillus subtilisPurR Operator Using Genetic and Bioinformatic Tools and Expansion of the PurR Regulon with glyA, guaC,pbuG, xpt-pbuX, yqhZ-folD, and pbuO. J. Bacteriol. 2001;183:6175–6183. doi: 10.1128/JB.183.21.6175-6183.2001. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace