Quantitative Aspect of Bacillus subtilis σB Regulatory Network on a Proteome Level-A Computational Simulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO:61388971
Czech Academy of Sciences
LM2023055
Ministry of Education Youth and Sports of the Czech Republic
PubMed
39194552
PubMed Central
PMC11351616
DOI
10.3390/biology13080614
PII: biology13080614
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus subtilis, computational modeling, protein regulatory networks, sigma B,
- Publikační typ
- časopisecké články MeSH
Bacillus subtilis is a model organism used to study molecular processes in Gram-positive bacteria. Sigma factor B, which associates with RNA polymerase, is one of the transcriptional regulators involved in the cell's response to environmental stress. Experiments have proven that the amounts of free σB (SigB) are controlled by a system of anti- (RsbW) and anti-anti-sigma (RsbV) factors expressed from the same operon as SigB. Moreover, the phosphorylation state of RsbV is controlled by phosphatases RsbP and RsbU, which directly dephosphorylate RsbV. A set of chemical equations describing the network controlling the levels of free SigB was converted to a set of differential equations quantifying the dynamics of the network. The solution of these equations allowed the simulation of the kinetic behavior of the network and its components under real conditions reflected in the time series of protein expression. In this study, the time series of protein expression measured by mass spectrometry were utilized to investigate the role of phosphatases RsbU/RsbP in transmitting the environmental signal. Additionally, the influence of kinetic constants and the amounts of other network components on the functioning of the network was investigated. A comparison with the same simulation performed using a transcriptomic dataset showed that while the time series between the proteomic and transcriptomic datasets are not correlated, the results are the same. This indicates that when modeling is performed within one dataset, it does not matter whether the data come from the mRNA or protein level. In summary, the computational results based on experimental data provide a quantitative insight into the functioning of the SigB-dependent circuit and offer a template for the quantitative study of similar systems.
Zobrazit více v PubMed
Hecker M., Pane-Farre J., Volker U. SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu. Rev. Microbiol. 2007;61:215–236. doi: 10.1146/annurev.micro.61.080706.093445. PubMed DOI
Eymann C., Hecker M. Induction of sigma(B)-dependent general stress genes by amino acid starvation in a spo0H mutant of Bacillus subtilis. FEMS Microbiol. Lett. 2001;199:221–227. doi: 10.1111/j.1574-6968.2001.tb10678.x. PubMed DOI
Helmann J.D., Wu M.F., Kobel P.A., Gamo F.J., Wilson M., Morshedi M.M., Navre M., Paddon C. Global transcriptional response of Bacillus subtilis to heat shock. J. Bacteriol. 2001;183:7318–7328. doi: 10.1128/JB.183.24.7318-7328.2001. PubMed DOI PMC
Petersohn A., Brigulla M., Haas S., Hoheisel J.D., Volker U., Hecker M. Global analysis of the general stress response of Bacillus subtilis. J. Bacteriol. 2001;183:5617–5631. doi: 10.1128/JB.183.19.5617-5631.2001. PubMed DOI PMC
Reder A., Hoper D., Gerth U., Hecker M. Contributions of individual sigmaB-dependent general stress genes to oxidative stress resistance of Bacillus subtilis. J. Bacteriol. 2012;194:3601–3610. doi: 10.1128/JB.00528-12. PubMed DOI PMC
Hecker M., Schumann W., Volker U. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 1996;19:417–428. doi: 10.1046/j.1365-2958.1996.396932.x. PubMed DOI
Locke J.C., Young J.W., Fontes M., Hernandez Jimenez M.J., Elowitz M.B. Stochastic pulse regulation in bacterial stress response. Science. 2011;334:366–369. doi: 10.1126/science.1208144. PubMed DOI PMC
Avila-Perez M., van der Steen J.B., Kort R., Hellingwerf K.J. Red light activates the sigmaB-mediated general stress response of Bacillus subtilis via the energy branch of the upstream signaling cascade. J. Bacteriol. 2010;192:755–762. doi: 10.1128/JB.00826-09. PubMed DOI PMC
Dufour A., Haldenwang W.G. Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV) J. Bacteriol. 1994;176:1813–1820. doi: 10.1128/jb.176.7.1813-1820.1994. PubMed DOI PMC
Vijay K., Brody M.S., Fredlund E., Price C.W. A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the sigmaB transcription factor of Bacillus subtilis. Mol. Microbiol. 2000;35:180–188. doi: 10.1046/j.1365-2958.2000.01697.x. PubMed DOI
Price C.W., Fawcett P., Ceremonie H., Su N., Murphy C.K., Youngman P. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol. Microbiol. 2001;41:757–774. doi: 10.1046/j.1365-2958.2001.02534.x. PubMed DOI
Yeak K.Y.C., Boekhorst J., Wels M., Abee T., Wells-Bennik M.H.J. Prediction and validation of novel SigB regulon members in Bacillus subtilis and regulon structure comparison to Bacillales members. BMC Microbiol. 2023;23:17. doi: 10.1186/s12866-022-02700-0. PubMed DOI PMC
Narula J., Tiwari A., Igoshin O.A. Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor Networks. PLoS Comput. Biol. 2016;12:e1005267. doi: 10.1371/journal.pcbi.1005267. PubMed DOI PMC
Vohradsky J., Schwarz M., Ramaniuk O., Ruiz-Larrabeiti O., Vankova Hausnerova V., Sanderova H., Krasny L. Kinetic Modeling and Meta-Analysis of the Bacillus subtilis SigB Regulon during Spore Germination and Outgrowth. Microorganisms. 2021;9:112. doi: 10.3390/microorganisms9010112. PubMed DOI PMC
Vohradsky J. Quantitative Aspect of Bacillus subtilis sigmaB Regulatory Network—A Computational Simulation. Biology. 2022;11:1729. doi: 10.3390/biology11121729. PubMed DOI PMC
Pospisil J., Sax A., Hubalek M., Krasny L., Vohradsky J. Whole proteome analysis of germinating and outgrowing Bacillus subtilis 168. Proteomics. 2024;2024:e2400031. doi: 10.1002/pmic.202400031. PubMed DOI
Lundgren J. 2010. [(accessed on 1 January 2020)]. Available online: http://www.mathworks.com/matlabcentral/fileexchange/13812-splinefit.
Delumeau O., Lewis R.J., Yudkin M.D. Protein-protein interactions that regulate the energy stress activation of sigma(B) in Bacillus subtilis. J. Bacteriol. 2002;184:5583–5589. doi: 10.1128/JB.184.20.5583-5589.2002. PubMed DOI PMC