Whole proteome analysis of germinating and outgrowing Bacillus subtilis 168
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
61388971
RVO
CEP - Centrální evidence projektů
LX22NPO5103)
National Institute of virology and bacteriology (Programme EXCELES
22-06342K
Grantová Agentura České Republiky
LM2023055
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39044338
DOI
10.1002/pmic.202400031
Knihovny.cz E-zdroje
- Klíčová slova
- KEGG pathways analysis, protein functional analysis, time series of protein expression,
- MeSH
- Bacillus subtilis * metabolismus růst a vývoj MeSH
- bakteriální proteiny * metabolismus MeSH
- proteom * metabolismus analýza MeSH
- proteomika metody MeSH
- spory bakteriální * metabolismus růst a vývoj MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- proteom * MeSH
In this study, we present a high-resolution dataset and bioinformatic analysis of the proteome of Bacillus subtilis 168 trp+ (BSB1) during germination and spore outgrowth. Samples were collected at 14 different time points (ranging from 0 to 130 min) in three biological replicates after spore inoculation into germination medium. A total of 2191 proteins were identified and categorized based on their expression kinetics. We observed four distinct clusters that were analyzed for functional categories and KEGG pathways annotations. The examination of newly synthesized proteins between successive time points revealed significant changes, particularly within the first 50 min. The dataset provides an information base that can be used for modeling purposes and inspire the design of new experiments.
Zobrazit více v PubMed
Barbosa, T. M., Serra, C. U. R., La Ragione, R. M., Woodward, M. J., & Henriques, A. O. (2005). Screening for bacillus isolates in the broiler gastrointestinal tract. Applied and Environmental Microbiology, 71, 968–978.
Gonzalez, D. J., Haste, N. M., Hollands, A., Fleming, T. C., Hamby, M., Pogliano, K., Nizet, V., & Dorrestein, P. C. (2011). Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology (N Y Reading), 157, 2485–2492.
Liu, Y., Patko, D., Engelhardt, I., George, T. S., Stanley‐Wall, N. R., Ladmiral, V., Ameduri, B., Daniell, T. J., Holden, N., MacDonald, M. P., & Dupuy, L. X. (2021). Plant‐environment microscopy tracks interactions of Bacillus subtilis with plant roots across the entire rhizosphere. PNAS, 118, e2109176118.
Muratov, E., Rosenbaum, F. P., Fuchs, F. M., Ulrich, N. J., Awakowicz, P., Setlow, P., & Moeller, R. (2023). Multifactorial resistance of Bacillus subtilis spores to low‐pressure plasma sterilization. Applied and Environmental Microbiology, 90(1), e0132923.
Cho, W.‐I. L., & Chung, M.‐S. (2020). Bacillus spores: A review of their properties and inactivation processing technologies. Food Science and Biotechnology, 29, 1447–1461.
Artzi, L., Alon, A., Brock, K. P., Green, A. G., Tam, A., Ramírez‐Guadiana, F. H., Marks, D., Kruse, A., & Rudner, D. Z. (2021). Dormant spores sense amino acids through the B subunits of their germination receptors. Nature Communications, 12, 6842.
Gao, Y., Amon, J. D., Artzi, L., Ramírez‐Guadiana, F. H., Brock, K. P., Cofsky, J. C., Marks, D. S., Kruse, A. C., & Rudner, D. Z. (2023). Bacterial spore germination receptors are nutrient‐gated ion channels. Science, 380, 387–391.
Latorre, J. D., Hernandez‐Velasco, X., Kallapura, G., Menconi, A., Pumford, N. R., Morgan, M. J., Layton, S. L., Bielke, L. R., Hargis, B. M., & Téllez, G. (2014). Evaluation of germination, distribution, and persistence of Bacillus subtilis spores through the gastrointestinal tract of chickens. Poultry Science, 93, 1793–1800.
Yi, X., & Setlow, P. (2010). Studies of the commitment step in the germination of spores of bacillus species. Journal of Bacteriology, 192, 3424–3433.
Swarge, B., Abhyankar, W., Jonker, M., Hoefsloot, H., Kramer, G., Setlow, P., Brul, S., & de Koning, L. J. (2020). Integrative analysis of proteome and transcriptome dynamics during Bacillus subtilis spore revival. mSphere, 5, e00420–e00463.
Kudo, T., Suzuki, S., & Iwabuehi, T. (1981). Importance of monitoring the circulating blood volume in patients with cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery, 9, 514–520.
Arvizu Hernandez, I., Hernandez Flores, J. L., Caballero Perez, J., Gutierrez Sanchez, H., Ramos López, M. Á., Romero Gómez, S., Cruz Hernández, A., Saldaña Gutierrez, C., Álvarez Hidalgo, E., Jones, G. H., & Campos Guillén, J. (2020). Analysis of tRNA (Cys) processing under salt stress in Bacillus subtilis spore outgrowth using RNA sequencing data. F1000Research, 9, 501.
Otto, A., Bernhardt, J., Meyer, H., Schaffer, M., Herbst, F.‐A., Siebourg, J., Mäder, U., Lalk, M., Hecker, M., & Becher, D. (2010). Systems‐wide temporal proteomic profiling in glucose‐starved Bacillus subtilis. Nature Communications, 1, 137.
Hahne, H., Mader, U., Otto, A., Bonn, F., Steil, L., Bremer, E., Hecker, M., & Becher, D. (2010). A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. Journal of Bacteriology, 192, 870–882.
Ravikumar, V., Nalpas, N. C., Anselm, V., Krug, K., Lenuzzi, M., Šestak, M. S., Domazet‐Lošo, T., Mijakovic, I., & Macek, B. (2018). In‐depth analysis of Bacillus subtilis proteome identifies new ORFs and traces the evolutionary history of modified proteins. Scientific Reports, 8, 17246.
Lundgren, J. (2010). http://www.mathworks.com/matlabcentral/fileexchange/13812‐splinefit
Pedreira, T., Elfmann, C., & Stülke, J. (2022). The current state of SubtiWiki, the database for the model organism Bacillus subtilis. Nucleic Acids Research, 50, D875–D882.
Perez‐Riverol, Y., Bai, J., Bandla, C., García‐Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, D. J., Prakash, A., Frericks‐Zipper, A., Eisenacher, M., Walzer, M., Wang, S., Brazma, A., & Vizcaíno, J. A. (2022). The PRIDE database resources in 2022: A hub for mass spectrometry‐based proteomics evidences. Nucleic Acids Research, 50, D543–D552.