Oxidation pattern of the anticancer drug ellipticine by hepatic microsomes - similarity between human and rat systems
Jazyk angličtina Země Slovensko Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
17197724
Knihovny.cz E-zdroje
- MeSH
- adukty DNA metabolismus MeSH
- antitumorózní látky metabolismus MeSH
- druhová specificita MeSH
- elipticiny metabolismus MeSH
- hydroxylace MeSH
- inhibitory cytochromu P450 MeSH
- inhibitory enzymů farmakologie MeSH
- jaterní mikrozomy účinky léků metabolismus MeSH
- králíci MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- oxidace-redukce MeSH
- potkani Wistar MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- techniky in vitro MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- adukty DNA MeSH
- antitumorózní látky MeSH
- elipticiny MeSH
- ellipticine MeSH Prohlížeč
- inhibitory cytochromu P450 MeSH
- inhibitory enzymů MeSH
- systém (enzymů) cytochromů P-450 MeSH
Ellipticine is an antineoplastic agent, whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of DNA adducts mediated by cytochrome P450 (CYP). We investigated the ability of CYP enzymes in rat, rabbit and human hepatic microsomes to oxidize ellipticine and evaluated suitable animal models mimicking its oxidation in humans. Ellipticine is oxidized by microsomes of all species to 7-hydroxy-, 9-hydroxy-, 12-hydroxy-, 13-hydroxyellipticine and ellipticine N(2)-oxide. However, only rat microsomes generated the pattern of ellipticine metabolites reproducing that formed by human microsomes. While rabbit microsomes favored the production of ellipticine N(2)-oxide, human and rat microsomes predominantly formed 13-hydroxyellipticine. The species difference in expression and catalytic activities of individual CYPs in livers are the cause of these metabolic differences. Formation of 7-hydroxy- and 9-hydroxyellipticine was attributable to CYP1A in microsomes of all species. However, production of 13-hydroxy-, 12-hydroxyellipticine and ellipticine N(2)-oxide, the metabolites generating DNA adducts, was attributable to the orthologous CYPs only in rats and humans. CYP3A predominantly generates these metabolites in rat and human microsomes, while CYP2C3 activity prevails in microsomes of rabbits. The results underline the suitability of rat species as a model to evaluate human susceptibility to ellipticine.