Application of hepatic cytochrome b5/P450 reductase null (HBRN) mice to study the role of cytochrome b5 in the cytochrome P450-mediated bioactivation of the anticancer drug ellipticine
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
14329
Cancer Research UK - United Kingdom
15709
Cancer Research UK - United Kingdom
22357
Cancer Research UK - United Kingdom
PubMed
30685480
PubMed Central
PMC6382462
DOI
10.1016/j.taap.2019.01.020
PII: S0041-008X(19)30034-1
Knihovny.cz E-zdroje
- Klíčová slova
- Cytochrome P450, Cytochrome b(5), DNA Adducts, Metabolism, Mouse models,
- MeSH
- adukty DNA metabolismus MeSH
- aromatické hydroxylasy metabolismus MeSH
- cytochrom P-450 CYP3A MeSH
- cytochrom-B(5)-reduktasa nedostatek genetika MeSH
- cytochromy b5 nedostatek genetika MeSH
- elipticiny metabolismus farmakologie MeSH
- fenotyp MeSH
- genotyp MeSH
- hepatocyty enzymologie MeSH
- jaterní mikrozomy enzymologie MeSH
- játra enzymologie MeSH
- metabolická aktivace MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- protinádorové látky metabolismus farmakologie MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA MeSH
- aromatické hydroxylasy MeSH
- CYP3A protein, mouse MeSH Prohlížeč
- cytochrom P-450 CYP3A MeSH
- cytochrom-B(5)-reduktasa MeSH
- cytochromy b5 MeSH
- elipticiny MeSH
- ellipticine MeSH Prohlížeč
- NADPH-cytochrom c-reduktasa MeSH
- protinádorové látky MeSH
- systém (enzymů) cytochromů P-450 MeSH
The anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b5 (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b5/P450 Reductase Null (HBRN) mice. HRN mice have POR deleted specifically in hepatocytes; HBRN mice also have Cyb5 deleted in the liver. Mice were treated once with 10 mg/kg body weight ellipticine (n = 4/group) for 24 h. Ellipticine-DNA adduct levels measured by 32P-postlabelling were significantly lower in HRN and HBRN livers than in wild-type (WT) livers; however no significant difference was observed between HRN and HBRN livers. Ellipticine-DNA adduct formation in WT, HRN and HBRN livers correlated with Cyp1a and Cyp3a enzyme activities measured in hepatic microsomes in the presence of NADPH confirming the importance of P450 enzymes in the bioactivation of ellipticine in vivo. Hepatic microsomal fractions were also utilised in incubations with ellipticine and DNA in the presence of NADPH, cofactor for POR, and NADH, cofactor for Cyb5 reductase (Cyb5R), to examine ellipticine-DNA adduct formation. With NADPH adduct formation decreased as electron donors were lost which correlated with the formation of the reactive metabolites 12- and 13-hydroxy-ellipticine in hepatic microsomes. No difference in adduct formation was observed in the presence of NADH. Our study demonstrates that Cyb5 contributes to the P450-mediated bioactivation of ellipticine in vitro, but not in vivo.
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Division of Radiopharmaceutical Chemistry German Cancer Research Center Heidelberg Germany
Zobrazit více v PubMed
Aimova D., Poljakova J., Kotrbova V., Moserova M., Frei E., Arlt V.M., Stiborova M. Ellipticine and benzo(a)pyrene increase their own metabolic activation via modulation of expression and enzymatic activity of cytochromes P450 1A1 and 1A2. Interdiscip. Toxicol. 2008;1:160–168. PubMed PMC
Aimova D., Svobodova L., Kotrbova V., Mrazova B., Hodek P., Hudecek J., Vaclavikova R., Frei E., Stiborova M. The anticancer drug ellipticine is a potent inducer of rat cytochromes P450 1A1 and 1A2, thereby modulating its own metabolism. Drug Metab. Dispos. 2007;35:1926–1934. PubMed
Arlt V.M., Henderson C.J., Wolf C.R., Stiborova M., Phillips D.H. The Hepatic Reductase Null (HRN) and Reductase Conditional Null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants. Toxicol. Res. 2015;4:548–562.
Arlt V.M., Poirier M.C., Sykes S.E., John K., Moserova M., Stiborova M., Wolf C.R., Henderson C.J., Phillips D.H. Exposure to benzo[a]pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) mice: detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling. Toxicol. Lett. 2012;213:160–166. PubMed PMC
Arlt V.M., Stiborova M., Henderson C.J., Osborne M.R., Bieler C.A., Frei E., Martinek V., Sopko B., Wolf C.R., Schmeiser H.H., Phillips D.H. Environmental pollutant and potent mutagen 3-nitrobenzanthrone forms DNA adducts after reduction by NAD(P)H:quinone oxidoreductase and conjugation by acetyltransferases and sulfotransferases in human hepatic cytosols. Cancer Res. 2005;65:2644–2652. PubMed
Arlt V.M., Stiborova M., Hewer A., Schmeiser H.H., Phillips D.H. Human enzymes involved in the metabolic activation of the environmental contaminant 3-nitrobenzanthrone: evidence for reductive activation by human NADPH:cytochrome p450 reductase. Cancer Res. 2003;63:2752–2761. PubMed
Banerjee A., Sanyal S., Majumder P., Chakraborty P., Jana K., Das C., Dasgupta D. Recognition of chromatin by the plant alkaloid, ellipticine as a dual binder. Biochem. Biophys. Res. Commun. 2015;462:352–357. PubMed
Burke M.D., Thompson S., Weaver R.J., Wolf C.R., Mayer R.T. Cytochrome P450 specificities of alkoxyresorufin O-dealkylation in human and rat liver. Biochem. Pharmacol. 1994;48:923–936. PubMed
Finn R.D., McLaughlin L.A., Ronseaux S., Rosewell I., Houston J.B., Henderson C.J., Wolf C.R. Defining the in Vivo Role for cytochrome b5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b5. J. Biol. Chem. 2008;283:31385–31393. PubMed PMC
Garbett N.C., Graves D.E. Extending nature's leads: the anticancer agent ellipticine. Curr. Med. Chem. Anticancer Agents. 2004;4:149–172. PubMed
Henderson C.J., McLaughlin L.A., Finn R.D., Ronseaux S., Kapelyukh Y., Wolf C.R. A role for cytochrome b5 in the in vivo disposition of anticancer and cytochrome P450 probe drugs in mice. Drug Metab. Dispos. 2014;42:70–77. PubMed PMC
Henderson C.J., McLaughlin L.A., Wolf C.R. Evidence that cytochrome b5 and cytochrome b5 reductase can act as sole electron donors to the hepatic cytochrome P450 system. Mol. Pharmacol. 2013;83:1209–1217. PubMed
Henderson C.J., Otto D.M., Carrie D., Magnuson M.A., McLaren A.W., Rosewell I., Wolf C.R. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J. Biol. Chem. 2003;278:13480–13486. PubMed
Kotrbova V., Aimova D., Brezinova A., Janouchova K., Poljakova J., Frei E., Stiborova M. Cytochromes P450 reconstituted with NADPH: P450 reductase mimic the activating and detoxicating metabolism of the anticancer drug ellipticine in microsomes. Neuro. Endocrinol. Lett. 2006;27(Suppl. 2):18–22. PubMed
Kotrbova V., Mrazova B., Moserova M., Martinek V., Hodek P., Hudecek J., Frei E., Stiborova M. Cytochrome b(5) shifts oxidation of the anticancer drug ellipticine by cytochromes P450 1A1 and 1A2 from its detoxication to activation, thereby modulating its pharmacological efficacy. Biochem. Pharmacol. 2011;82:669–680. PubMed
Levova K., Moserova M., Kotrbova V., Sulc M., Henderson C.J., Wolf C.R., Phillips D.H., Frei E., Schmeiser H.H., Mares J., Arlt V.M., Stiborova M. Role of cytochromes P450 1A1/2 in detoxication and activation of carcinogenic aristolochic acid I: studies with the hepatic NADPH:cytochrome P450 reductase null (HRN) mouse model. Toxicol. Sci. 2011;121:43–56. PubMed
Martinkova E., Maglott A., Leger D.Y., Bonnet D., Stiborova M., Takeda K., Martin S., Dontenwill M. alpha5beta1 integrin antagonists reduce chemotherapy-induced premature senescence and facilitate apoptosis in human glioblastoma cells. Int. J. Cancer. 2010;127:1240–1248. PubMed
Miller C.M., McCarthy F.O. Isolation, biological activity and synthesis of the natural product ellipticine and related pyridocarbazoles. RSC Adv. 2012;2:8883–8918.
Nebert D.W., Shi Z., Galvez-Peralta M., Uno S., Dragin N. Oral benzo[a]pyrene: understanding pharmacokinetics, detoxication, and consequences--Cyp1 knockout mouse lines as a paradigm. Mol. Pharmacol. 2013;84:304–313. PubMed PMC
Poljakova J., Forsterova K., Sulc M., Frei E., Stiborova M. Oxidation of an antitumor drug ellipticine by peroxidases. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2005;149:449–453. PubMed
Reed L., Arlt V.M., Phillips D.H. The role of cytochrome P450 enzymes in carcinogen activation and detoxication: an in vivo-in vitro paradox. Carcinogenesis. 2018;39:851–859. PubMed PMC
Reed L., Mrizova I., Barta F., Indra R., Moserova M., Kopka K., Schmeiser H.H., Wolf C.R., Henderson C.J., Stiborova M., Phillips D.H., Arlt V.M. Cytochrome b5 impacts on cytochrome P450-mediated metabolism of benzo[a]pyrene and its DNA adduct formation: studies in hepatic cytochrome b5/P450 reductase null (HBRN) mice. Arch. Toxicol. 2018;92:1625–1638. PubMed PMC
Stiborova M., Arlt V.M., Henderson C.J., Wolf C.R., Kotrbova V., Moserova M., Hudecek J., Phillips D.H., Frei E. Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine: Studies with the hepatic NADPH:Cytochrome P450 reductase null mouse. Toxicol. Appl. Pharmacol. 2008;226:318–327. PubMed
Stiborova M., Bieler C.A., Wiessler M., Frei E. The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts. Biochem. Pharmacol. 2001;62:1675–1684. PubMed
Stiborova M., Borek-Dohalska L., Aimova D., Kotrbova V., Kukackova K., Janouchova K., Rupertova M., Ryslava H., Hudecek J., Frei E. Oxidation pattern of the anticancer drug ellipticine by hepatic microsomes – similarity between human and rat systems. Gen. Physiol. Biophys. 2006;25:245–261. PubMed
Stiborova M., Breuer A., Aimova D., Stiborova-Rupertova M., Wiessler M., Frei E. DNA adduct formation by the anticancer drug ellipticine in rats determined by 32P-postlabeling. Int. J. Cancer. 2003;107:885–890. PubMed
Stiborova M., Cerna V., Moserova M., Arlt V.M., Frei E. The effect of benzo[a]pyrene on metabolic activation of anticancer drug ellipticine in mice. Neuro. Endocrinol. Lett. 2013;34(Suppl. 2):43–54. PubMed
Stiborova M., Cerna V., Moserova M., Mrizova I., Arlt V.M., Frei E. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN) mice and pure enzymes. Int. J. Mol. Sci. 2014;16:284–306. PubMed PMC
Stiborova M., Frei E. Ellipticines as DNA-targeted chemotherapeutics. Curr. Med. Chem. 2014;21:575–591. PubMed
Stiborova M., Indra R., Frei E., Kopeckova K., Schmeiser H.H., Eckschlager T., Adam V., Heger Z., Arlt V.M., Martinek V. Cytochrome b5 plays a dual role in the reaction cycle of cytochrome P450 3A4 during oxidation of the anticancer drug ellipticine. Monatsh. Chem. 2017;148:1983–1991. PubMed PMC
Stiborova M., Indra R., Moserova M., Cerna V., Rupertova M., Martinek V., Eckschlager T., Kizek R., Frei E. Cytochrome b5 increases cytochrome P450 3A4-mediated activation of anticancer drug ellipticine to 13-hydroxyellipticine whose covalent binding to DNA is elevated by sulfotransferases and N,O-acetyltransferases. Chem. Res. Toxicol. 2012;25:1075–1085. PubMed
Stiborova M., Levova K., Barta F., Shi Z., Frei E., Schmeiser H.H., Nebert D.W., Phillips D.H., Arlt V.M. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol. Sci. 2012;125:345–358. PubMed PMC
Stiborova M., Manhartova Z., Hodek P., Adam V., Kizek R., Frei E. Formation of DNA adducts by ellipticine and its micellar form in rats – a comparative study. Sensors. 2014;14:22982–22997. PubMed PMC
Stiborova M., Martinek V., Rydlova H., Hodek P., Frei E. Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res. 2002;62:5678–5684. PubMed
Stiborova M., Martinek V., Rydlova H., Koblas T., Hodek P. Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1-phenylazo-2-naphthol (Sudan I) in human livers. Cancer Lett. 2005;220:145–154. PubMed
Stiborova M., Moserova M., Mrizova I., Dracinska H., Martinek V., Indra R., Frei E., Adam V., Kizek R., Schmeiser H.H., Kubackova K., Arlt V.M. Induced expression of microsomal cytochrome b 5 determined at mRNA and protein levels in rats exposed to ellipticine, benzo[a]pyrene, and 1-phenylazo-2-naphthol (Sudan I) Monatsh. Chem. 2016;147:897–904. PubMed PMC
Stiborova M., Poljakova J., Martinkova E., Ulrichova J., Simanek V., Dvorak Z., Frei E. Ellipticine oxidation and DNA adduct formation in human hepatocytes is catalyzed by human cytochromes P450 and enhanced by cytochrome b5. Toxicology. 2012;302:233–241. PubMed
Stiborova M., Poljakova J., Ryslava H., Dracinsky M., Eckschlager T., Frei E. Mammalian peroxidases activate anticancer drug ellipticine to intermediates forming deoxyguanosine adducts in DNA identical to those found in vivo and generated from 12-hydroxyellipticine and 13-hydroxyellipticine. Int. J. Cancer. 2007;120:243–251. PubMed
Stiborova M., Rupertova M., Aimova D., Ryslava H., Frei E. Formation and persistence of DNA adducts of anticancer drug ellipticine in rats. Toxicology. 2007;236:50–60. PubMed
Stiborova M., Rupertova M., Frei E. Cytochrome P450- and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its anti-tumor efficiency. Biochim. Biophys. Acta. 2011;1814:175–185. PubMed
Stiborova M., Sejbal J., Borek-Dohalska L., Aimova D., Poljakova J., Forsterova K., Rupertova M., Wiesner J., Hudecek J., Wiessler M., Frei E. The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N2-oxide. Cancer Res. 2004;64:8374–8380. PubMed
Stiborova M., Stiborova-Rupertova M., Borek-Dohalska L., Wiessler M., Frei E. Rat microsomes activating the anticancer drug ellipticine to species covalently binding to deoxyguanosine in DNA are a suitable model mimicking ellipticine bioactivation in humans. Chem. Res. Toxicol. 2003;16:38–47. PubMed
Vann K.R., Ergun Y., Zencir S., Oncuoglu S., Osheroff N., Topcu Z. Inhibition of human DNA topoisomerase IIalpha by two novel ellipticine derivatives. Bioorg. Med. Chem. Lett. 2016;26:1809–1812. PubMed PMC
Willis A.J., Indra R., Wohak L.E., Sozeri O., Feser K., Mrizova I., Phillips D.H., Stiborova M., Arlt V.M. The impact of chemotherapeutic drugs on the CYP1A1-catalysed metabolism of the environmental carcinogen benzo[a]pyrene: Effects in human colorectal HCT116 TP53(+/+), TP53(+/−) and TP53(−/−) cells. Toxicology. 2018;398-399:1–12. PubMed PMC
Yamazaki H., Nakamura M., Komatsu T., Ohyama K., Hatanaka N., Asahi S., Shimada N., Guengerich F.P., Shimada T., Nakajima M., Yokoi T. Roles of NADPH-P450 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Protein Expr. Purif. 2002;24:329–337. PubMed
Yamazaki H., Nakano M., Gillam E.M., Bell L.C., Guengerich F.P., Shimada T. Requirements for cytochrome b5 in the oxidation of 7-ethoxycoumarin, chlorzoxazone, aniline, and N-nitrosodimethylamine by recombinant cytochrome P450 2E1 and by human liver microsomes. Biochem. Pharmacol. 1996;52:301–309. PubMed
Yamazaki H., Nakano M., Imai Y., Ueng Y.F., Guengerich F.P., Shimada T. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Arch. Biochem. Biophys. 1996;325:174–182. PubMed
Zhang H., Im S.C., Waskell L. Cytochrome b5 increases the rate of product formation by cytochrome P450 2B4 and competes with cytochrome P450 reductase for a binding site on cytochrome P450 2B4. J. Biol. Chem. 2007;282:29766–29776. PubMed