Cytochrome b 5 impacts on cytochrome P450-mediated metabolism of benzo[a]pyrene and its DNA adduct formation: studies in hepatic cytochrome b 5 /P450 reductase null (HBRN) mice
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
C4639/A10822
Cancer Research UK - United Kingdom
C313/A14329
Cancer Research UK - United Kingdom
101126/B/13/Z
Wellcome Trust - United Kingdom
22357
Cancer Research UK - United Kingdom
101126/Z/13/Z
Wellcome Trust - United Kingdom
10822
Cancer Research UK - United Kingdom
Wellcome Trust - United Kingdom
1524896
Medical Research Council - United Kingdom
PubMed
29368147
PubMed Central
PMC5882632
DOI
10.1007/s00204-018-2162-7
PII: 10.1007/s00204-018-2162-7
Knihovny.cz E-zdroje
- MeSH
- adukty DNA metabolismus MeSH
- benzopyren metabolismus MeSH
- cytochrom-B(5)-reduktasa metabolismus MeSH
- hepatocyty enzymologie MeSH
- jaterní mikrozomy enzymologie MeSH
- myši knockoutované MeSH
- myši MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adukty DNA MeSH
- benzo(a)pyrene-DNA adduct MeSH Prohlížeč
- benzopyren MeSH
- cytochrom-B(5)-reduktasa MeSH
- NADPH-cytochrom c-reduktasa MeSH
Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b 5 /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes. In HBRN mice the microsomal haemoprotein cytochrome b 5 , which can also act as an electron donor from cytochrome b 5 reductase to P450s, is also deleted in the liver. Wild-type (WT), HRN and HBRN mice were treated by i.p. injection with 125 mg/kg body weight BaP for 24 h. Hepatic microsomal fractions were isolated from BaP-treated and untreated mice. In vitro incubations carried out with BaP-pretreated microsomal fractions, BaP and DNA resulted in significantly higher BaP-DNA adduct formation with WT microsomal fractions compared to those from HRN or HBRN mice. Adduct formation (i.e. 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP [dG-N2-BPDE]) correlated with observed CYP1A activity and metabolite formation (i.e. BaP-7,8-dihydrodiol) when NADPH or NADH was used as enzymatic cofactors. BaP-DNA adduct levels (i.e. dG-N2-BPDE) in vivo were significantly higher (~ sevenfold) in liver of HRN mice than WT mice while no significant difference in adduct formation was observed in liver between HBRN and WT mice. Our results demonstrate that POR and cytochrome b 5 both modulate P450-mediated activation of BaP in vitro. However, hepatic P450 enzymes in vivo appear to be more important for BaP detoxification than its activation.
Zobrazit více v PubMed
Alexandrov LB, Ju YS, Haase K, et al. Mutational signatures associated with tobacco smoking in human cancer. Science (New York NY) 2016;354(6312):618–622. doi: 10.1126/science.aag0299. PubMed DOI PMC
Arlt VM, Stiborova M, Hewer A, Schmeiser HH, Phillips DH. Human enzymes involved in the metabolic activation of the environmental contaminant 3-nitrobenzanthrone: evidence for reductive activation by human NADPH:cytochrome p450 reductase. Cancer Res. 2003;63(11):2752–2761. PubMed
Arlt VM, Stiborova M, Henderson CJ, et al. Metabolic activation of benzo[a]pyrene in vitro by hepatic cytochrome P450 contrasts with detoxification in vivo: experiments with hepatic cytochrome P450 reductase null mice. Carcinogenesis. 2008;29(3):656–665. doi: 10.1093/carcin/bgn002. PubMed DOI
Arlt VM, Levova K, Barta F, et al. Role of P450 1A1 and P450 1A2 in bioactivation versus detoxication of the renal carcinogen aristolochic acid I: studies in Cyp1a1-/-, Cyp1a2-/-, and Cyp1a1/1a2-/- mice. Chem Res Toxicol. 2011;24(10):1710–1719. doi: 10.1021/tx200259y. PubMed DOI
Arlt VM, Singh R, Stiborova M, et al. Effect of hepatic cytochrome P450 (P450) oxidoreductase deficiency on 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-DNA adduct formation in P450 reductase conditional null mice. Drug Metab Dispos. 2011;39(12):2169–2173. doi: 10.1124/dmd.111.041343. PubMed DOI
Arlt VM, Poirier MC, Sykes SE, et al. Exposure to benzo[a]pyrene of hepatic cytochrome P450 reductase null (HRN) and P450 reductase conditional null (RCN) mice: detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling. Toxicol Lett. 2012;213(2):160–166. doi: 10.1016/j.toxlet.2012.06.016. PubMed DOI PMC
Arlt VM, Henderson CJ, Wolf CR, Stiborova M, Phillips DH. The hepatic reductase null (HRN) and reductase conditional null (RCN) mouse models as suitable tools to study metabolism, toxicity and carcinogenicity of environmental pollutants. Toxicol Res. 2015;4(3):548–562. doi: 10.1039/C4TX00116H. DOI
Arlt VM, Krais AM, Godschalk RW, et al. Pulmonary inflammation impacts on CYP1A1-mediated respiratory tract DNA damage induced by the carcinogenic air pollutant benzo[a]pyrene. Toxicol Sci. 2015;146(2):213–225. doi: 10.1093/toxsci/kfv086. PubMed DOI PMC
Baird WM, Hooven LA, Mahadevan B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen. 2005;45(2–3):106–114. doi: 10.1002/em.20095. PubMed DOI
Buters JT, Mahadevan B, Quintanilla-Martinez L, et al. Cytochrome P450 1B1 determines susceptibility to dibenzo[a,l]pyrene-induced tumor formation. Chem Res Toxicol. 2002;15(9):1127–1135. doi: 10.1021/tx020017q. PubMed DOI
Fang AH, Smith WA, Vouros P, et al. Identification and characterization of a novel benzo[a]pyrene-derived DNA adduct. Biochem Biophys Res Commun. 2001;281(2):383–389. doi: 10.1006/bbrc.2000.4161. PubMed DOI
Finn RD, McLaughlin LA, Ronseaux S, et al. Defining the in vivo role for cytochrome b5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b5. J Biol Chem. 2008;283(46):31385–31393. doi: 10.1074/jbc.M803496200. PubMed DOI PMC
Ginsberg GL, Atherholt TB. Transport of DNA-adducting metabolites in mouse serum following benzo[a]pyrene administration. Carcinogenesis. 1989;10(4):673–679. doi: 10.1093/carcin/10.4.673. PubMed DOI
Guengerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol. 2008;21(1):70–83. doi: 10.1021/tx700079z. PubMed DOI
Hakura A, Sonoda J, Tsutsui Y, et al. Toxicity profile of benzo[a]pyrene in the male LacZ transgenic mouse (MutaMouse) following oral administration for 5 consecutive days. Regul Toxicol Pharmacol. 1998;27(3):273–279. doi: 10.1006/rtph.1998.1218. PubMed DOI
Henderson CJ, Otto DM, Carrie D, et al. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J Biol Chem. 2003;278(15):13480–13486. doi: 10.1074/jbc.M212087200. PubMed DOI
Henderson CJ, Pass GJ, Wolf CR. The hepatic cytochrome P450 reductase null mouse as a tool to identify a successful candidate entity. Toxicol Lett. 2006;162(1):111–117. doi: 10.1016/j.toxlet.2005.10.016. PubMed DOI
Henderson CJ, McLaughlin LA, Wolf CR. Evidence that cytochrome b5 and cytochrome b5 reductase can act as sole electron donors to the hepatic cytochrome P450 system. Mol Pharmacol. 2013;83(6):1209–1217. doi: 10.1124/mol.112.084616. PubMed DOI
Hildebrandt A, Estabrook RW. Evidence for the participation of cytochrome b 5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys. 1971;143(1):66–79. doi: 10.1016/0003-9861(71)90186-X. PubMed DOI
Horton JK, Rosenior JC, Bend JR, Anderson MW. Quantitation of benzo(a)pyrene metabolite: DNA adducts in selected hepatic and pulmonary cell types isolated from [3H]benzo(a)pyrene-treated rabbits. Cancer Res. 1985;45(8):3477–3481. PubMed
Huang M, Blair IA, Penning TM. Identification of stable benzo[a]pyrene-7,8-dione-DNA adducts in human lung cells. Chem Res Toxicol. 2013;26(5):685–692. doi: 10.1021/tx300476m. PubMed DOI PMC
IARC . Some non-heterocyclic polycyclic aromatic hydrocarbons and some related occupational exposures. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon: IARC Press; 2010. PubMed PMC
IARC . Outdoor air pollution. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon: IARC Press; 2016. PubMed PMC
Jiang H, Shen YM, Quinn AM, Penning TM. Competing roles of cytochrome P450 1A1/1B1 and aldo-keto reductase 1A1 in the metabolic activation of (+/-)-7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene in human bronchoalveolar cell extracts. Chem Res Toxicol. 2005;18(2):365–374. doi: 10.1021/tx0497245. PubMed DOI
Jiang H, Vudathala DK, Blair IA, Penning TM. Competing roles of aldo-keto reductase 1A1 and cytochrome P4501B1 in benzo[a]pyrene-7,8-diol activation in human bronchoalveolar H358 cells: role of AKRs in P4501B1 induction. Chem Res Toxicol. 2006;19(1):68–78. doi: 10.1021/tx0502488. PubMed DOI
Kimura S, Kawabe M, Ward JM, et al. CYP1A2 is not the primary enzyme responsible for 4-aminobiphenyl-induced hepatocarcinogenesis in mice. Carcinogenesis. 1999;20(9):1825–1830. doi: 10.1093/carcin/20.9.1825. PubMed DOI
Kimura S, Kawabe M, Yu A, et al. Carcinogenesis of the food mutagen PhIP in mice is independent of CYP1A2. Carcinogenesis. 2003;24(3):583–587. doi: 10.1093/carcin/24.3.583. PubMed DOI
Kondraganti SR, Fernandez-Salguero P, Gonzalez FJ, Ramos KS, Jiang W, Moorthy B. Polycyclic aromatic hydrocarbon-inducible DNA adducts: evidence by 32P-postlabeling and use of knockout mice for Ah receptor-independent mechanisms of metabolic activation in vivo. Int J Cancer. 2003;103(1):5–11. doi: 10.1002/ijc.10784. PubMed DOI
Krais AM, Speksnijder EN, Melis JP, et al. The impact of p53 on DNA damage and metabolic activation of the environmental carcinogen benzo[a]pyrene: effects in Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice. Arch Toxicol. 2016;90(4):839–851. doi: 10.1007/s00204-015-1531-8. PubMed DOI PMC
Kucab JE, Phillips DH, Arlt VM. Metabolic activation of diesel exhaust carcinogens in primary and immortalized human TP53 knock-in (Hupki) mouse embryo fibroblasts. Environ Mol Mutagen. 2012;53(3):207–217. doi: 10.1002/em.21679. PubMed DOI
Kucab JE, van Steeg H, Luijten M, et al. TP53 mutations induced by BPDE in Xpa-WT and Xpa-Null human TP53 knock-in (Hupki) mouse embryo fibroblasts. Mutat Res. 2015;773:48–62. doi: 10.1016/j.mrfmmm.2015.01.013. PubMed DOI PMC
Labib S, Yauk C, Williams A, et al. Subchronic oral exposure to benzo(a)pyrene leads to distinct transcriptomic changes in the lungs that are related to carcinogenesis. Toxicol Sci. 2012;129(1):213–224. doi: 10.1093/toxsci/kfs177. PubMed DOI PMC
Labib S, Williams A, Guo CH, et al. Comparative transcriptomic analyses to scrutinize the assumption that genotoxic PAHs exert effects via a common mode of action. Arch Toxicol. 2016;90(10):2461–2480. doi: 10.1007/s00204-015-1595-5. PubMed DOI PMC
Long AS, Lemieux CL, Arlt VM, White PA. Tissue-specific in vivo genetic toxicity of nine polycyclic aromatic hydrocarbons assessed using the MutaMouse transgenic rodent assay. Toxicol Appl Pharmacol. 2016;290:31–42. doi: 10.1016/j.taap.2015.11.010. PubMed DOI PMC
Long AS, Wills JW, Krolak D, Guo M, et al. Benchmark dose analyses of multiple genetic toxicity endpoints permit robust, cross-tissue comparisons of MutaMouse responses to orally delivered benzo[a]pyrene. Arch Toxicol. 2017 PubMed PMC
Luch A, Baird WM. Metabolic activation and detoxification of polycyclic aromatic hydrocarbons. In: Luch A, editor. The carcinogenic effects of polycyclic aromatic hydrocarbons. London: Imperial College Press; 2005. pp. 19–96.
Marnett LJ. Prostaglandin synthase-mediated metabolism of carcinogens and a potential role for peroxyl radicals as reactive intermediates. Environ Health Perspect. 1990;88:5–12. doi: 10.1289/ehp.90885. PubMed DOI PMC
Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6(12):947–960. doi: 10.1038/nrc2015. PubMed DOI
Nebert DW, Shi Z, Galvez-Peralta M, Uno S, Dragin N. Oral benzo[a]pyrene: understanding pharmacokinetics, detoxication, and consequences–Cyp1 knockout mouse lines as a paradigm. Mol Pharmacol. 2013;84(3):304–313. doi: 10.1124/mol.113.086637. PubMed DOI PMC
Nesnow S, Ross J, Nelson G, Holden K, et al. Quantitative and temporal relationships between DNA adduct formation in target and surrogate tissues: implications for biomonitoring. Environ Health Perspect. 1993;101(Suppl 3):37–42. doi: 10.1289/ehp.93101s337. PubMed DOI PMC
Phillips DH. Polycyclic aromatic hydrocarbons in the diet. Mutat Res. 1999;443(1–2):139–147. doi: 10.1016/S1383-5742(99)00016-2. PubMed DOI
Phillips DH. Macromolecular adducts as biomarkers of human exposure to polycyclic aromatic hydrocarbons. In: Luch A, editor. The carcinogenic effects of polycyclic aromatic hydrocarbons. London: Imperial College Press; 2005. pp. 137–169.
Phillips DH, Arlt VM. (32)P-postlabeling analysis of DNA adducts. Methods Mol Bio. 2014 PubMed
Phillips DH, Venitt S. DNA and protein adducts in human tissues resulting from exposure to tobacco smoke. Int J Cancer. 2012;131(12):2733–2753. doi: 10.1002/ijc.27827. PubMed DOI
Rendic S, Guengerich FP. Contributions of human enzymes in carcinogen metabolism. Chem Res Toxicol. 2012;25(7):1316–1383. doi: 10.1021/tx300132k. PubMed DOI PMC
Sagredo C, Ovrebo S, Haugen A, et al. Quantitative analysis of benzo[a]pyrene biotransformation and adduct formation in Ahr knockout mice. Toxicol Lett. 2006;167(3):173–182. doi: 10.1016/j.toxlet.2006.09.005. PubMed DOI
Schoket B, Levay K, Phillips DH, Vincze I. 32P-postlabelling analysis of DNA adducts of benzo[a]pyrene formed in complex metabolic activation systems in vitro. Cancer Lett. 1989;48(1):67–75. doi: 10.1016/0304-3835(89)90204-8. PubMed DOI
Sebti SM, Baird WM, Knowles BB, Diamond L. Benzo[a]pyrene–DNA adduct formation in target cells in a cell-mediated mutation assay. Carcinogenesis. 1982;3(11):1317–1320. doi: 10.1093/carcin/3.11.1317. PubMed DOI
Shi Z, Dragin N, Galvez-Peralta M, et al. Organ-specific roles of CYP1A1 during detoxication of dietary benzo[a]pyrene. Mol Pharmacol. 2010;78(1):46–57. doi: 10.1124/mol.110.063438. PubMed DOI PMC
Siddens LK, Larkin A, Krueger SK, et al. Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol Appl Pharmacol. 2012;264(3):377–386. doi: 10.1016/j.taap.2012.08.014. PubMed DOI PMC
Stiborova M, Martinek V, Rydlova H, Hodek P, Frei E. Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res. 2002;62(20):5678–5684. PubMed
Stiborova M, Martinek V, Rydlova H, Koblas T, Hodek P. Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1-phenylazo-2-naphthol (Sudan I) in human livers. Cancer lett. 2005;220(2):145–154. doi: 10.1016/j.canlet.2004.07.036. PubMed DOI
Stiborova M, Levova K, Barta F, et al. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol Sci. 2012;125(2):345–358. doi: 10.1093/toxsci/kfr306. PubMed DOI PMC
Stiborova M, Moserova M, Cerna V, et al. Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions. Toxicology. 2014;318:1–12. doi: 10.1016/j.tox.2014.02.002. PubMed DOI
Stiborova M, Indra R, Moserova M, et al. NADH:Cytochrome b5 reductase and cytochrome b5 can act as sole electron donors to human cytochrome P450 1A1-mediated oxidation and DNA adduct formation by benzo[a]pyrene. Chem Res Toxicol. 2016;29(8):1325–1334. doi: 10.1021/acs.chemrestox.6b00143. PubMed DOI PMC
Stiborova M, Indra R, Moserova M, et al. NADPH- and NADH-dependent metabolism of and DNA adduct formation by benzo[a]pyrene catalyzed with rat hepatic microsomes and cytochrome P450 1A1. Monatsh Chem. 2016;147:847–855. doi: 10.1007/s00706-016-1713-y. PubMed DOI PMC
Uno S, Dalton TP, Shertzer HG, et al. Benzo[a]pyrene-induced toxicity: paradoxical protection in Cyp1a1(-/-) knockout mice having increased hepatic BaP-DNA adduct levels. Biochem Biophys Res Commun. 2001;289(5):1049–1056. doi: 10.1006/bbrc.2001.6110. PubMed DOI
Uno S, Dalton TP, Derkenne S, et al. Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Mol Pharmacol. 2004;65(5):1225–1237. doi: 10.1124/mol.65.5.1225. PubMed DOI
Uno S, Dalton TP, Dragin N, et al. Oral benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body burden and clearance rate. Mol Pharmacol. 2006;69(4):1103–1114. doi: 10.1124/mol.105.021501. PubMed DOI
Wang L, Xu W, Ma L, et al. Detoxification of benzo[a]pyrene primarily depends on cytochrome P450, while bioactivation involves additional oxidoreductases including 5-lipoxygenase, cyclooxygenase, and aldo-keto reductase in the liver. J Biochem Mol Toxicol. 2017 PubMed
Wiese FW, Thompson PA, Kadlubar FF. Carcinogen substrate specificity of human COX-1 and COX-2. Carcinogenesis. 2001;22(1):5–10. doi: 10.1093/carcin/22.1.5. PubMed DOI
Wohak LE, Krais AM, Kucab JE, et al. Carcinogenic polycyclic aromatic hydrocarbons induce CYP1A1 in human cells via a p53-dependent mechanism. Arch Toxicol. 2016;90(2):291–304. doi: 10.1007/s00204-014-1409-1. PubMed DOI PMC
Wu L, Gu J, Weng Y, et al. Conditional knockout of the mouse NADPH-cytochrome p450 reductase gene. Genesis. 2003;36(4):177–181. doi: 10.1002/gene.10214. PubMed DOI
Yamazaki H, Nakano M, Gillam EM, Bell LC, Guengerich FP, Shimada T. Requirements for cytochrome b5 in the oxidation of 7-ethoxycoumarin, chlorzoxazone, aniline, and N-nitrosodimethylamine by recombinant cytochrome P450 2E1 and by human liver microsomes. Biochem Pharmacol. 1996;52(2):301–309. doi: 10.1016/0006-2952(96)00208-0. PubMed DOI
Yamazaki H, Nakano M, Imai Y, Ueng YF, Guengerich FP, Shimada T. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Arch Biochem Biophys. 1996;325(2):174–182. doi: 10.1006/abbi.1996.0022. PubMed DOI
Yamazaki H, Nakamura M, Komatsu T, et al. Roles of NADPH-P450 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Protein Expr Purif. 2002;24(3):329–337. doi: 10.1006/prep.2001.1578. PubMed DOI