Benzo[a]pyrene-Induced Genotoxicity in Rats Is Affected by Co-Exposure to Sudan I by Altering the Expression of Biotransformation Enzymes

. 2021 Jul 28 ; 22 (15) : . [epub] 20210728

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34360828

Grantová podpora
15-02328S Grantová Agentura České Republiky

The environmental pollutant benzo[a]pyrene (BaP) is a human carcinogen that reacts with DNA after metabolic activation catalysed by cytochromes P450 (CYP) 1A1 and 1B1 together with microsomal epoxide hydrolase. The azo dye Sudan I is a potent inducer of CYP1A1/2. Here, Wistar rats were either treated with single doses of BaP (150 mg/kg bw) or Sudan I (50 mg/kg bw) alone or with both compounds in combination to explore BaP-derived DNA adduct formation in vivo. Using 32P-postlabelling, DNA adducts generated by BaP-7,8-dihydrodiol-9,10-epoxide were found in livers of rats treated with BaP alone or co-exposed to Sudan I. During co-exposure to Sudan I prior to BaP treatment, BaP-DNA adduct levels increased 2.1-fold in comparison to BaP treatment alone. Similarly, hepatic microsomes isolated from rats exposed to Sudan I prior to BaP treatment were also the most effective in generating DNA adducts in vitro with the activated metabolites BaP-7,8-dihydrodiol or BaP-9-ol as intermediates. DNA adduct formation correlated with changes in the expression and/or enzyme activities of CYP1A1, 1A2 and 1B1 in hepatic microsomes. Thus, BaP genotoxicity in rats in vivo appears to be related to the enhanced expression and/or activity of hepatic CYP1A1/2 and 1B1 caused by exposure of rats to the studied compounds. Our results indicate that the industrially employed azo dye Sudan I potentiates the genotoxicity of the human carcinogen BaP, and exposure to both substances at the same time seems to be hazardous to humans.

Zobrazit více v PubMed

IARC . Chemical Agents and Related Occupations. Volume 100F. IARC; Lyon, France: 2012. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans.

Miller K.P., Ramos K.S. Impact of Cellular Metabolism on the Biological Effects of Benzo[a]Pyrene and Related Hydrocarbons. Drug Metab. Rev. 2001;33:1–35. doi: 10.1081/DMR-100000138. PubMed DOI

Baird W.M., Hooven L.A., Mahadevan B. Carcinogenic Polycyclic Aromatic Hydrocarbon-DNA Adducts and Mechanism of Action. Environ. Mol. Mutagen. 2005;45:106–114. doi: 10.1002/em.20095. PubMed DOI

Luch A., Baird W.M. The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons. Imperial College Press; London, UK: 2005. Metabolic Activation and Detoxification of Polycyclic Aromatic Hydrocarbons; pp. 19–96.

Shimada T., Fujii-Kuriyama Y. Metabolic Activation of Polycyclic Aromatic Hydrocarbons to Carcinogens by Cytochromes P450 1A1 and 1B1. Cancer Sci. 2004;95:1–6. doi: 10.1111/j.1349-7006.2004.tb03162.x. PubMed DOI PMC

Stiborová M., Moserová M., Černá V., Indra R., Dračínský M., Šulc M., Henderson C.J., Wolf C.R., Schmeiser H.H., Phillips D.H., et al. Cytochrome B5 and Epoxide Hydrolase Contribute to Benzo[a]Pyrene-DNA Adduct Formation Catalyzed by Cytochrome P450 1A1 under Low NADPH:P450 Oxidoreductase Conditions. Toxicology. 2014;318:1–12. doi: 10.1016/j.tox.2014.02.002. PubMed DOI

Kim J.H., Stansbury K.H., Walker N.J., Trush M.A., Strickland P.T., Sutter T.R. Metabolism of Benzo[a]Pyrene and Benzo[a]Pyrene-7,8-Diol by Human Cytochrome P450 1B1. Carcinogenesis. 1998;19:1847–1853. doi: 10.1093/carcin/19.10.1847. PubMed DOI

Shimada T., Oda Y., Gillam E.M., Guengerich F.P., Inoue K. Metabolic Activation of Polycyclic Aromatic Hydrocarbons and Other Procarcinogens by Cytochromes P450 1A1 and P450 1B1 Allelic Variants and Other Human Cytochromes P450 in Salmonella typhimurium NM2009. Drug Metab. Dispos. Biol. Fate Chem. 2001;29:1176–1182. PubMed

Šulc M., Indra R., Moserová M., Schmeiser H.H., Frei E., Arlt V.M., Stiborová M. The Impact of Individual Cytochrome P450 Enzymes on Oxidative Metabolism of Benzo[a]Pyrene in Human Livers. Environ. Mol. Mutagen. 2016;57:229–235. doi: 10.1002/em.22001. PubMed DOI PMC

Bauer E., Guo Z., Ueng Y.F., Bell L.C., Zeldin D., Guengerich F.P. Oxidation of Benzo[a]Pyrene by Recombinant Human Cytochrome P450 Enzymes. Chem. Res. Toxicol. 1995;8:136–142. doi: 10.1021/tx00043a018. PubMed DOI

IARC Some Aromatic Azo Compounds. Volume 8. IARC; Lyon, France: 1975. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans.

Federal Institute for Risk Assessment (BfR) Dyes Sudan I to IV in Food 2003. BfR Opinion 19 November 2003. [(accessed on 23 June 2021)]; Available online: https://www.bfr.bund.de/cm/349/dyes_sudan_I_IV.pdf.

Møller P., Wallin H. Genotoxic Hazards of Azo Pigments and Other Colorants Related to 1-Phenylazo-2-Hydroxynaphthalene. Mutat. Res. Mutat. Res. 2000;462:13–30. doi: 10.1016/S1383-5742(99)00090-3. PubMed DOI

Mazzetti M., Fascioli R., Mazzoncini I., Spinelli G., Morelli I., Bertoli A. Determination of 1-Phenylazo-2-Naphthol (Sudan I) in Chilli Powder and in Chilli-Containing Food Products by GPC Clean-up and HPLC with LC/MS Confirmation. Food Addit. Contam. 2004;21:935–941. doi: 10.1080/02652030400007252. PubMed DOI

Dixit S., Khanna S.K., Das M. A Simple 2-Directional High-Performance Thin-Layer Chromatographic Method for the Simultaneous Determination of Curcumin, Metanil Yellow, and Sudan Dyes in Turmeric, Chili, and Curry Powders. J. AOAC Int. 2008;91:1387–1396. doi: 10.1093/jaoac/91.6.1387. PubMed DOI

Moreno-González D., Jáč P., Švec F., Nováková L. Determination of Sudan Dyes in Chili Products by Micellar Electrokinetic Chromatography-MS/MS Using a Volatile Surfactant. Food Chem. 2020;310:125963. doi: 10.1016/j.foodchem.2019.125963. PubMed DOI

Schwack W., Pellissier E., Morlock G. Analysis of Unauthorized Sudan Dyes in Food by High-Performance Thin-Layer Chromatography. Anal. Bioanal. Chem. 2018;410:5641–5651. doi: 10.1007/s00216-018-0945-6. PubMed DOI

Stiborová M., Martínek V., Rýdlová H., Hodek P., Frei E. Sudan I Is a Potential Carcinogen for Humans: Evidence for Its Metabolic Activation and Detoxication by Human Recombinant Cytochrome P450 1A1 and Liver Microsomes. Cancer Res. 2002;62:5678–5684. PubMed

Stiborova M., Schmeiser H.H., Frei E., Hodek P., Martinek V. Enzymes Oxidizing the Azo Dye 1-Phenylazo-2-Naphthol (Sudan I) and Their Contribution to Its Genotoxicity and Carcinogenicity. Curr. Drug Metab. 2014;15:829–840. doi: 10.2174/1389200216666150206125442. PubMed DOI

Nebert D.W., Shi Z., Gálvez-Peralta M., Uno S., Dragin N. Oral Benzo[a]Pyrene: Understanding Pharmacokinetics, Detoxication, and Consequences—Cyp1 Knockout Mouse Lines as a Paradigm. Mol. Pharmacol. 2013;84:304–313. doi: 10.1124/mol.113.086637. PubMed DOI PMC

Shimada T., Sugie A., Shindo M., Nakajima T., Azuma E., Hashimoto M., Inoue K. Tissue-Specific Induction of Cytochromes P450 1A1 and 1B1 by Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Engineered C57BL/6J Mice of Arylhydrocarbon Receptor Gene. Toxicol. Appl. Pharmacol. 2003;187:1–10. doi: 10.1016/S0041-008X(02)00035-2. PubMed DOI

Harrigan J.A., McGarrigle B.P., Sutter T.R., Olson J.R. Tissue Specific Induction of Cytochrome P450 (CYP) 1A1 and 1B1 in Rat Liver and Lung Following in Vitro (Tissue Slice) and in Vivo Exposure to Benzo(a)Pyrene. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA. 2006;20:426–438. doi: 10.1016/j.tiv.2005.08.015. PubMed DOI

Refat N.A.G.A., Ibrahim Z.S., Moustafa G.G., Sakamoto K.Q., Ishizuka M., Fujita S. The Induction of Cytochrome P450 1A1 by Sudan Dyes. J. Biochem. Mol. Toxicol. 2008;22:77–84. doi: 10.1002/jbt.20220. PubMed DOI

Stiborová M., Dračínská H., Martínek V., Svášková D., Hodek P., Milichovský J., Hejduková Ž., Brotánek J., Schmeiser H.H., Frei E. Induced Expression of Cytochrome P450 1A and NAD(P)H:Quinone Oxidoreductase Determined at MRNA, Protein, and Enzyme Activity Levels in Rats Exposed to the Carcinogenic Azo Dye 1-Phenylazo-2-Naphthol (Sudan I) Chem. Res. Toxicol. 2013;26:290–299. doi: 10.1021/tx3004533. PubMed DOI

Hodek P., Koblihová J., Kizek R., Frei E., Arlt V.M., Stiborová M. The Relationship between DNA Adduct Formation by Benzo[a]Pyrene and Expression of Its Activation Enzyme Cytochrome P450 1A1 in Rat. Environ. Toxicol. Pharmacol. 2013;36:989–996. doi: 10.1016/j.etap.2013.09.004. PubMed DOI

Aimová D., Poljaková J., Kotrbová V., Moserová M., Frei E., Arlt V.M., Stiborová M. Ellipticine and Benzo(a)Pyrene Increase Their Own Metabolic Activation via Modulation of Expression and Enzymatic Activity of Cytochromes P450 1A1 and 1A2. Interdiscip. Toxicol. 2008;1:160–168. doi: 10.2478/v10102-010-0033-z. PubMed DOI PMC

Stiborová M., Indra R., Moserová M., Bořek-Dohalská L., Hodek P., Frei E., Kopka K., Schmeiser H.H., Arlt V.M. Comparison of Human Cytochrome P450 1A1-Catalysed Oxidation of Benzo[a]Pyrene in Prokaryotic and Eukaryotic Expression Systems. Mon. Chem. 2017;148:1959–1969. doi: 10.1007/s00706-017-2002-0. PubMed DOI PMC

Uno S., Dalton T.P., Derkenne S., Curran C.P., Miller M.L., Shertzer H.G., Nebert D.W. Oral Exposure to Benzo[a]Pyrene in the Mouse: Detoxication by Inducible Cytochrome P450 Is More Important Than Metabolic Activation. Mol. Pharmacol. 2004;65:1225–1237. doi: 10.1124/mol.65.5.1225. PubMed DOI

Arlt V.M., Stiborová M., Henderson C.J., Thiemann M., Frei E., Aimová D., Singh R., Gamboa da Costa G., Schmitz O.J., Farmer P.B., et al. Metabolic Activation of Benzo[a]Pyrene in Vitro by Hepatic Cytochrome P450 Contrasts with Detoxification in Vivo: Experiments with Hepatic Cytochrome P450 Reductase Null Mice. Carcinogenesis. 2008;29:656–665. doi: 10.1093/carcin/bgn002. PubMed DOI

Reed L., Arlt V.M., Phillips D.H. The Role of Cytochrome P450 Enzymes in Carcinogen Activation and Detoxication: An in Vivo–in Vitro Paradox. Carcinogenesis. 2018;39:851–859. doi: 10.1093/carcin/bgy058. PubMed DOI PMC

Fang A.H., Smith W.A., Vouros P., Gupta R.C. Identification and Characterization of a Novel Benzo[a]Pyrene-Derived DNA Adduct. Biochem. Biophys. Res. Commun. 2001;281:383–389. doi: 10.1006/bbrc.2000.4161. PubMed DOI

Schoket B., Lévay K., Phillips D.H., Vincze I. 32P-Postlabelling Analysis of DNA Adducts of Benzo[a]Pyrene Formed in Complex Metabolic Activation Systems in Vitro. Cancer Lett. 1989;48:67–75. doi: 10.1016/0304-3835(89)90204-8. PubMed DOI

Ross J., Nelson G., Kligerman A., Erexson G., Bryant M., Earley K., Gupta R., Nesnow S. Formation and Persistence of Novel Benzo(a)Pyrene Adducts in Rat Lung, Liver, and Peripheral Blood Lymphocyte DNA. Cancer Res. 1990;50:5088–5094. PubMed

Vähäkangas K., Raunio H., Pasanen M., Sivonen P., Park S.S., Gelboin H.V., Pelkonen O. Comparison of the Formation of Benzo[a]Pyrene Diolepoxide-DNA Adducts in Vitro by Rat and Human Microsomes: Evidence for the Involvement of P-450IA1 and P-450IA2. J. Biochem. Toxicol. 1989;4:79–86. doi: 10.1002/jbt.2570040203. PubMed DOI

Indra R. Mechanism of Enzymatic Activation of Carcinogens and Drugs by the System of Cytochrome P450. Charles University; Prague, Czech Republic: 2015.

Burke M.D., Thompson S., Weaver R.J., Wolf C.R., Mayers R.T. Cytochrome P450 Specificities of Alkoxyresorufin O-Dealkylation in Human and Rat Liver. Biochem. Pharmacol. 1994;48:923–936. doi: 10.1016/0006-2952(94)90363-8. PubMed DOI

Stiborová M., Martínek V., Rýdlová H., Koblas T., Hodek P. Expression of Cytochrome P450 1A1 and Its Contribution to Oxidation of a Potential Human Carcinogen 1-Phenylazo-2-Naphthol (Sudan I) in Human Livers. Cancer Lett. 2005;220:145–154. doi: 10.1016/j.canlet.2004.07.036. PubMed DOI

Safe S. Molecular Biology of the Ah Receptor and Its Role in Carcinogenesis. Toxicol. Lett. 2001;120:1–7. doi: 10.1016/S0378-4274(01)00301-0. PubMed DOI

Stiborová M., Indra R., Moserová M., Frei E., Schmeiser H.H., Kopka K., Philips D.H., Arlt V.M. NADH:Cytochrome B5 Reductase and Cytochrome B5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]Pyrene. Chem. Res. Toxicol. 2016;29:1325–1334. doi: 10.1021/acs.chemrestox.6b00143. PubMed DOI PMC

Skupinska K., Misiewicz I., Kasprzycka-Guttman T. A Comparison of the Concentration-Effect Relationships of PAHs on CYP1A Induction in HepG2 and Mcf7 Cells. Arch. Toxicol. 2007;81:183–200. doi: 10.1007/s00204-006-0140-y. PubMed DOI

Arlt V.M., Krais A.M., Godschalk R.W., Riffo-Vasquez Y., Mrizova I., Roufosse C.A., Corbin C., Shi Q., Frei E., Stiborova M., et al. Pulmonary Inflammation Impacts on CYP1A1-Mediated Respiratory Tract DNA Damage Induced by the Carcinogenic Air Pollutant Benzo[a]Pyrene. Toxicol. Sci. Off. J. Soc. Toxicol. 2015;146:213–225. doi: 10.1093/toxsci/kfv086. PubMed DOI PMC

Nesnow S., Ross J., Nelson G., Holden K., Erexson G., Kligerman A., Gupta R.C. Quantitative and Temporal Relationships between DNA Adduct Formation in Target and Surrogate Tissues: Implications for Biomonitoring. Environ. Health Perspect. 1993;101(Suppl. S3):37–42. doi: 10.1289/ehp.93101s337. PubMed DOI PMC

Stansbury K.H., Flesher J.W., Gupta R.C. Mechanism of Aralkyl-DNA Adduct Formation from Benzo[a]Pyrene in Vivo. Chem. Res. Toxicol. 1994;7:254–259. doi: 10.1021/tx00038a019. PubMed DOI

Lee B.M., Shim G.A. Dietary Exposure Estimation of Benzo[a]Pyrene and Cancer Risk Assessment. J. Toxicol. Environ. Health A. 2007;70:1391–1394. doi: 10.1080/15287390701434182. PubMed DOI

Alomirah H., Al-Zenki S., Al-Hooti S., Zaghloul S., Sawaya W., Ahmed N., Kannan K. Concentrations and Dietary Exposure to Polycyclic Aromatic Hydrocarbons (PAHs) from Grilled and Smoked Foods. Food Control. 2011;22:2028–2035. doi: 10.1016/j.foodcont.2011.05.024. DOI

Public Health England Polycyclic Aromatic Hydrocarbons (Benzo[a]Pyrene) Toxicological Overview 2018. [(accessed on 16 July 2021)]; Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/737017/PAH_TO_PHE_240818.pdf.

Ding Y.S., Ward J., Hammond D., Watson C.H. Mouth-Level Intake of Benzo[a]Pyrene from Reduced Nicotine Cigarettes. Int. J. Environ. Res. Public. Health. 2014;11:11898–11914. doi: 10.3390/ijerph111111898. PubMed DOI PMC

Shimada T. Xenobiotic-Metabolizing Enzymes Involved in Activation and Detoxification of Carcinogenic Polycyclic Aromatic Hydrocarbons. Drug Metab. Pharmacokinet. 2006;21:257–276. doi: 10.2133/dmpk.21.257. PubMed DOI

Stiborova M., Schmeiser H.H., Breuer A., Frei E. P-32-Postlabelling Analysis of DNA Adducts with 1-(Phenylazo)-2-Naphthol (Sudan I, Solvent Yellow 14) Formed in Vivo in Fisher 344 Rats. Collect. Czechoslov. Chem. Commun. 1999;64:1335–1347. doi: 10.1135/cccc19991335. DOI

Arlt V.M., Poirier M.C., Sykes S.E., John K., Moserova M., Stiborova M., Wolf C.R., Henderson C.J., Phillips D.H. Exposure to Benzo[a]Pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) Mice: Detection of Benzo[a]Pyrene Diol Epoxide-DNA Adducts by Immunohistochemistry and 32P-Postlabelling. Toxicol. Lett. 2012;213:160–166. doi: 10.1016/j.toxlet.2012.06.016. PubMed DOI PMC

Sims P., Grover P.L., Swaisland A., Pal K., Hewer A. Metabolic Activation of Benzo(a)Pyrene Proceeds by a Diol-Epoxide. Nature. 1974;252:326–328. doi: 10.1038/252326a0. PubMed DOI

Reed L., Mrizova I., Barta F., Indra R., Moserova M., Kopka K., Schmeiser H.H., Wolf C.R., Henderson C.J., Stiborova M., et al. Cytochrome B5impacts on Cytochrome P450-Mediated Metabolism of Benzo[a]Pyrene and Its DNA Adduct Formation: Studies in Hepatic Cytochrome B5/P450 Reductase Null (HBRN) Mice. Arch. Toxicol. 2018;92:1625–1638. doi: 10.1007/s00204-018-2162-7. PubMed DOI PMC

Beal M.A., Meier M.J., Williams A., Rowan-Carroll A., Gagné R., Lindsay S.J., Fitzgerald T., Hurles M.E., Marchetti F., Yauk C.L. Paternal Exposure to Benzo(a)Pyrene Induces Genome-Wide Mutations in Mouse Offspring. Commun. Biol. 2019;2:1–10. doi: 10.1038/s42003-019-0476-5. PubMed DOI PMC

Reed L., Jarvis I.W.H., Phillips D.H., Arlt V.M. Enhanced DNA Adduct Formation by Benzo[a]Pyrene in Human Liver Cells Lacking Cytochrome P450 Oxidoreductase. Mutat. Res. Toxicol. Environ. Mutagen. 2020;852:503162. doi: 10.1016/j.mrgentox.2020.503162. PubMed DOI PMC

Meier S., Karlsen Ø., Le Goff J., Sørensen L., Sørhus E., Pampanin D.M., Donald C.E., Fjelldal P.G., Dunaevskaya E., Romano M., et al. DNA Damage and Health Effects in Juvenile Haddock (Melanogrammus aeglefinus) Exposed to PAHs Associated with Oil-Polluted Sediment or Produced Water. PLoS ONE. 2020;15:e0240307. doi: 10.1371/journal.pone.0240307. PubMed DOI PMC

Kishino Y., Hasegawa T., Yamoto T., Mori K. Species Differences in Micronucleus Induction of the Clastogenic Compounds Associated with Drug Metabolic Profile. J. Toxicol. Sci. 2019;44:701–709. doi: 10.2131/jts.44.701. PubMed DOI

Ramesh A., Knuckles M.E. Dose-Dependent Benzo(a)Pyrene [B(a)P]–DNA Adduct Levels and Persistence in F-344 Rats Following Subchronic Dietary Exposure to B(a)P. Cancer Lett. 2006;240:268–278. doi: 10.1016/j.canlet.2005.09.016. PubMed DOI

Denison M.S., Whitlock J.P. Xenobiotic-Inducible Transcription of Cytochrome P450 Genes. J. Biol. Chem. 1995;270:18175–18178. doi: 10.1074/jbc.270.31.18175. PubMed DOI

Stiborová M., Dračínská H., Bořek-Dohalská L., Klusoňová Z., Holecová J., Martínková M., Schmeiser H.H., Arlt V.M. Exposure to Endocrine Disruptors 17alpha-Ethinylestradiol and Estradiol Influences Cytochrome P450 1A1-Mediated Genotoxicity of Benzo[a]Pyrene and Expression of This Enzyme in Rats. Toxicology. 2018;400–401:48–56. doi: 10.1016/j.tox.2018.04.001. PubMed DOI PMC

Endo K., Uno S., Seki T., Ariga T., Kusumi Y., Mitsumata M., Yamada S., Makishima M. Inhibition of Aryl Hydrocarbon Receptor Transactivation and DNA Adduct Formation by CYP1 Isoform-Selective Metabolic Deactivation of Benzo[a]Pyrene. Toxicol. Appl. Pharmacol. 2008;230:135–143. doi: 10.1016/j.taap.2008.02.009. PubMed DOI

Dickins M. Induction of Cytochromes P450. Curr. Top. Med. Chem. 2004;4:1745–1766. doi: 10.2174/1568026043387115. PubMed DOI

Floreani M., Gabbia D., Barbierato M., DE Martin S., Palatini P. Differential Inducing Effect of Benzo[a]Pyrene on Gene Expression and Enzyme Activity of Cytochromes P450 1A1 and 1A2 in Sprague-Dawley and Wistar Rats. Drug Metab. Pharmacokinet. 2012;27:640–652. doi: 10.2133/dmpk.DMPK-12-RG-035. PubMed DOI

Wang K., Feng C., Li C., Yao J., Xie X., Gong L., Luan Y., Xing G., Zhu X., Qi X., et al. Baicalin Protects Mice from Aristolochic Acid I-Induced Kidney Injury by Induction of CYP1A through the Aromatic Hydrocarbon Receptor. Int. J. Mol. Sci. 2015;16:16454–16468. doi: 10.3390/ijms160716454. PubMed DOI PMC

Yoshinari K., Ueda R., Kusano K., Yoshimura T., Nagata K., Yamazoe Y. Omeprazole Transactivates Human CYP1A1 and CYP1A2 Expression through the Common Regulatory Region Containing Multiple Xenobiotic-Responsive Elements. Biochem. Pharmacol. 2008;76:139–145. doi: 10.1016/j.bcp.2008.04.005. PubMed DOI

Lin J.H. CYP Induction-Mediated Drug Interactions: In Vitro Assessment and Clinical Implications. Pharm. Res. 2006;23:1089–1116. doi: 10.1007/s11095-006-0277-7. PubMed DOI

Tompkins L.M., Wallace A.D. Mechanisms of Cytochrome P450 Induction. J. Biochem. Mol. Toxicol. 2007;21:176–181. doi: 10.1002/jbt.20180. PubMed DOI

Corcos L., Marc N., Wein S., Fautrel A., Guillouzo A., Pineau T. Phenobarbital Induces Cytochrome P4501A2 HnRNA, MRNA and Protein in the Liver of C57BL/6J Wild Type and Aryl Hydrocarbon Receptor Knock-out Mice. FEBS Lett. 1998;425:293–297. doi: 10.1016/S0014-5793(98)00246-4. PubMed DOI

Ryu D.Y., Levi P.E., Hodgson E. Regulation of Hepatic CYP1A Isozymes by Piperonyl Butoxide and Acenaphthylene in the Mouse. Chem. Biol. Interact. 1997;105:53–63. doi: 10.1016/S0009-2797(97)00035-5. PubMed DOI

Silver G., Krauter K.S. Expression of Cytochromes P-450c and P-450d MRNAs in Cultured Rat Hepatocytes. 3-Methylcholanthrene Induction Is Regulated Primarily at the Post-Transcriptional Level. J. Biol. Chem. 1988;263:11802–11807. doi: 10.1016/S0021-9258(18)37856-6. PubMed DOI

Yoshinari K., Yoda N., Toriyabe T., Yamazoe Y. Constitutive Androstane Receptor Transcriptionally Activates Human CYP1A1 and CYP1A2 Genes through a Common Regulatory Element in the 5’-Flanking Region. Biochem. Pharmacol. 2010;79:261–269. doi: 10.1016/j.bcp.2009.08.008. PubMed DOI

Lubet R.A., Connolly G., Kouri R.E., Nebert D.W., Bigelow S.W. Biological Effects of the Sudan Dyes. Role of the Ah Cytosolic Receptor. Biochem. Pharmacol. 1983;32:3053–3058. doi: 10.1016/0006-2952(83)90248-4. PubMed DOI

Schmeiser H.H., Stiborova M., Arlt V.M. 32P-Postlabeling Analysis of DNA Adducts. In: Dhawan A., Bajpayee M., editors. Genotoxicity Assessment: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2013. pp. 389–401. Methods in Molecular Biology. PubMed

Kimura T., Kodama M., Nagata C. N-Hydroxylation Enzymes of Carcinogenic Aminoazo Dyes: Possible Involvement of Cytochrome P-448. Gan. 1982;73:55–62. PubMed

Omura T., Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 1964;239:2370–2378. doi: 10.1016/S0021-9258(20)82244-3. PubMed DOI

Stiborová M., Dračínská H., Mizerovská J., Frei E., Schmeiser H.H., Hudeček J., Hodek P., Phillips D.H., Arlt V.M. The Environmental Pollutant and Carcinogen 3-Nitrobenzanthrone Induces Cytochrome P450 1A1 and NAD(P)H:Quinone Oxidoreductase in Rat Lung and Kidney, Thereby Enhancing Its Own Genotoxicity. Toxicology. 2008;247:11–22. doi: 10.1016/j.tox.2008.01.018. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...