Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock

. 2023 Sep ; 19 (9) : e1010924. [epub] 20230908

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37683015

TAIMAN (TAI), the only insect ortholog of mammalian Steroid Receptor Coactivators (SRCs), is a critical modulator of ecdysone and juvenile hormone (JH) signaling pathways, which govern insect development and reproduction. The modulatory effect is mediated by JH-dependent TAI's heterodimerization with JH receptor Methoprene-tolerant and association with the Ecdysone Receptor complex. Insect hormones regulate insect physiology and development in concert with abiotic cues, such as photo- and thermoperiod. Here we tested the effects of JH and ecdysone signaling on the circadian clock by a combination of microsurgical operations, application of hormones and hormone mimics, and gene knockdowns in the linden bug Pyrrhocoris apterus males. Silencing taiman by each of three non-overlapping double-strand RNA fragments dramatically slowed the free-running period (FRP) to 27-29 hours, contrasting to 24 hours in controls. To further corroborate TAIMAN's clock modulatory function in the insect circadian clock, we performed taiman knockdown in the cockroach Blattella germanica. Although Blattella and Pyrrhocoris lineages separated ~380 mya, B. germanica taiman silencing slowed the FRP by more than 2 hours, suggesting a conserved TAI clock function in (at least) some insect groups. Interestingly, the pace of the linden bug circadian clock was neither changed by blocking JH and ecdysone synthesis, by application of the hormones or their mimics nor by the knockdown of corresponding hormone receptors. Our results promote TAI as a new circadian clock modulator, a role described for the first time in insects. We speculate that TAI participation in the clock is congruent with the mammalian SRC-2 role in orchestrating metabolism and circadian rhythms, and that TAI/SRCs might be conserved components of the circadian clock in animals.

Zobrazit více v PubMed

Cermakian N, Sassone-Corsi P. Multilevel regulation of the circadian clock. Nat Rev Mol Cell Biol. 2000; 1(1): 59–67. doi: 10.1038/35036078 PubMed DOI

Allada R, White NE, So WV, Hall JC, Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell. 1998; 93(5): 791–804. doi: 10.1016/s0092-8674(00)81440-3 PubMed DOI

Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998; 93(5): 805–814. doi: 10.1016/s0092-8674(00)81441-5 PubMed DOI

Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TD, et al.. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science. 1998; 280(5369): 1599–1603. doi: 10.1126/science.280.5369.1599 PubMed DOI

Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NR, Hardin PE, et al.. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell. 2003. Feb 7;112(3):329–41. doi: 10.1016/s0092-8674(03)00074-6 PubMed DOI

Zhou J, Yu W, Hardin PE. CLOCKWORK ORANGE Enhances PERIOD Mediated Rhythms in Transcriptional Repression by Antagonizing E-box Binding by CLOCK-CYCLE. PLoS Genet. 2016; 12(11): e1006430. doi: 10.1371/journal.pgen.1006430 PubMed DOI PMC

Chopra AR, Louet JF, Saha P, An J, Demayo F, Xu J, et al.. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke’s disease. Science. 2008; 322(5906): 1395–1399. doi: 10.1126/science.1164847 PubMed DOI PMC

Stashi E, Lanz RB, Mao J, Michailidis G, Zhu B, Kettner NM, et al.. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm. Cell Rep. 2014; 6(4): 633–645. doi: 10.1016/j.celrep.2014.01.027 PubMed DOI PMC

Yuan Q, Metterville D, Briscoe AD, Reppert SM. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol. 2007; 24(4): 948–955. doi: 10.1093/molbev/msm011 PubMed DOI

Kotwica-Rolinska J, Chodáková L, Smýkal V, Damulewicz M, Provazník J, Wu BC, et al.. Loss of Timeless Underlies an Evolutionary Transition within the Circadian Clock. Mol Biol Evol. 2022; 39(1): msab346. doi: 10.1093/molbev/msab346 PubMed DOI PMC

Sehgal A, Price JL, Man B, Young MW. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science. 1994; 263(5153): 1603–1606. doi: 10.1126/science.8128246 PubMed DOI

Gekakis N, Saez L, Delahaye-Brown AM, Myers MP, Sehgal A, Young MW, et al.. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science. 1995; 270(5237): 811–815. doi: 10.1126/science.270.5237.811 PubMed DOI

Hunter-Ensor M, Ousley A, Sehgal A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell. 1996; 84(5): 677–685. doi: 10.1016/s0092-8674(00)81046-6 PubMed DOI

Ceriani MF, Darlington TK, Staknis D, Más P, Petti AA, Weitz CJ, et al.. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science. 1999; 285(5427): 553–556. doi: 10.1126/science.285.5427.553 PubMed DOI

Emery P, Stanewsky R, Helfrich-Förster C, Emery-Le M, Hall JC, Rosbash M. Drosophila CRY is a deep brain circadian photoreceptor. Neuron. 2000; 26(2): 493–504. doi: 10.1016/s0896-6273(00)81181-2 PubMed DOI

Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, et al.. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell. 1998; 95(5): 681–692. doi: 10.1016/s0092-8674(00)81638-4 PubMed DOI

Truman JW. The Evolution of Insect Metamorphosis. Curr Biol. 2019; 29(23): R1252–R1268. doi: 10.1016/j.cub.2019.10.009 PubMed DOI

Konopova B, Jindra M. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A. 2007; 104(25): 10488–10493. doi: 10.1073/pnas.0703719104 PubMed DOI PMC

Konopova B, Smykal V, Jindra M. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One. 2011; 6(12): e28728. doi: 10.1371/journal.pone.0028728 PubMed DOI PMC

Li M, Mead EA, Zhu J. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc Natl Acad Sci U S A. 2011; 108(2): 638–643. doi: 10.1073/pnas.1013914108 PubMed DOI PMC

Zhang Z, Xu J, Sheng Z, Sui Y, Palli SR. Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J Biol Chem. 2011; 286(10): 8437–8447. doi: 10.1074/jbc.M110.191684 PubMed DOI PMC

Smykal V, Bajgar A, Provaznik J, Fexova S, Buricova M, Takaki K, et al.. Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. Insect Biochem Mol Biol. 2014; 45: 69–76. doi: 10.1016/j.ibmb.2013.12.003 PubMed DOI

Riddiford LM, Cherbas P, Truman JW. Ecdysone receptors and their biological actions. Vitam Horm. 2000; 60: 1–73. doi: 10.1016/s0083-6729(00)60016-x PubMed DOI

Tsai CC, Kao HY, Yao TP, McKeown M, Evans RM. SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR-mediated repression is critical for development. Mol Cell. 1999; 4(2): 175–186. doi: 10.1016/s1097-2765(00)80365-2 PubMed DOI

Bai J, Uehara Y, Montell DJ. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell. 2000; 103(7): 1047–1058. doi: 10.1016/s0092-8674(00)00208-7 PubMed DOI

Cymborowski B, Muszyńska-Pytel M, Porcheron P, Cassier P. Haemolymph ecdysteroid titres controlled by a circadian clock mechanism in larvae of the wax moth, Galleria mellonella. J Insect Physiol. 1991; 37 (1): 35–40. doi: 10.1016/0022-1910(91)90016-S DOI

Sakurai S, Kaya M, Satake S. Hemolymph ecdysteroid titer and ecdysteroid-dependent developmental events in the last-larval stadium of the silkworm, Bombyx mori: role of low ecdysteroid titer in larval–pupal metamorphosis and a reappraisal of the head critical period. J Insect Physiol. 1998; 44(10): 867–881. doi: 10.1016/s0022-1910(98)00075-4 PubMed DOI

Richter K. Daily changes in neuroendocrine control of moulting hormone secretion in the prothoracic gland of the cockroach Periplaneta americana (L.). J Insect Physiol. 2001; 47(4–5): 333–338. doi: 10.1016/S0022-1910(00)00122-0 PubMed DOI

Vafopoulou X, Steel CGH. Induction of rhythmicity in prothoracicotropic hormone and ecdysteroids in Rhodnius prolixus: roles of photic and neuroendocrine Zeitgebers. J Insect Physiol. 2001; 47(8): 935–941. doi: 10.1016/S0022-1910(01)00066-X DOI

Kumar S, Chen D, Jang C, Nall A, Zheng X, Sehgal A. An ecdysone-responsive nuclear receptor regulates circadian rhythms in Drosophila. Nat Commun. 2014; 5: 5697. doi: 10.1038/ncomms6697 PubMed DOI PMC

Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, et al.. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002; 110(2): 251–260. doi: 10.1016/s0092-8674(02)00825-5 PubMed DOI

Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, et al.. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004; 43(4): 527–537. doi: 10.1016/j.neuron.2004.07.018 PubMed DOI

Kamae Y, Uryu O, Miki T, Tomioka K. The nuclear receptor genes HR3 and E75 are required for the circadian rhythm in a primitive insect. PLoS One. 2014; 9(12): e114899. doi: 10.1371/journal.pone.0114899 PubMed DOI PMC

Jaumouillé E, Machado Almeida P, Stähli P, Koch R, Nagoshi E. Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock. Curr Biol. 2015; 25(11): 1502–1508. doi: 10.1016/j.cub.2015.04.017 PubMed DOI PMC

Hock T, Cottrill T, Keegan J, Garza D. The E23 early gene of Drosophila encodes an ecdysone-inducible ATP-binding cassette transporter capable of repressing ecdysone-mediated gene activation. Proc Natl Acad Sci U S A. 2000; 97(17): 9519–9524. doi: 10.1073/pnas.160271797 PubMed DOI PMC

Itoh TQ, Tanimura T, Matsumoto A. Membrane-bound transporter controls the circadian transcription of clock genes in Drosophila. Genes Cells. 2011; 16(12): 1159–1167. doi: 10.1111/j.1365-2443.2011.01559.x PubMed DOI

Shin SW, Zou Z, Saha TT, Raikhel AS. bHLH-PAS heterodimer of methoprene-tolerant and Cycle mediates circadian expression of juvenile hormone-induced mosquito genes. Proc Natl Acad Sci U S A. 2012; 109(41): 16576–16581. doi: 10.1073/pnas.1214209109 PubMed DOI PMC

Dolezel D, Zdechovanova L, Sauman I, Hodkova M. Endocrine-dependent expression of circadian clock genes in insects. Cell Mol Life Sci. 2008; 65(6): 964–969. doi: 10.1007/s00018-008-7506-7 PubMed DOI PMC

Bajgar A, Jindra M, Dolezel D. Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc Natl Acad Sci U S A. 2013; 110(11): 4416–4421. doi: 10.1073/pnas.1217060110 PubMed DOI PMC

Kelly TJ, Aldrich JR, Woods CW, Borkovec AB. Makisterone A: Its distribution and physiological role as the molting hormone of true bugs. Experientia. 1984; 40(9): 996–997. doi: 10.1007/BF01946477 DOI

Zachardova D, Sehnal F, Landa V. Makisterone A content and gonadal development in Pyrrhocoris apterus reared under long versus short photoperiods. In: Tonner M, Soldan T, Bennettova B. editors. Regulation of Insect Reproduction IV, Praha: Academia; 1989. pp. 59–71.

Jang AC, Chang YC, Bai J, Montell D. Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nat Cell Biol. 2009; 11(5): 569–579. doi: 10.1038/ncb1863 PubMed DOI PMC

Ma D, Przybylski D, Abruzzi KC, Schlichting M, Li Q, Long X, et al.. A transcriptomic taxonomy of Drosophila circadian neurons around the clock. Elife. 2021; 10: e63056. doi: 10.7554/eLife.63056 PubMed DOI PMC

Zhang C, Robinson BS, Xu W, Yang L, Yao B, Zhao H, et al.. The ecdysone receptor coactivator Taiman links Yorkie to transcriptional control of germline stem cell factors in somatic tissue. Dev Cell. 2015; 34(2): 168–180. doi: 10.1016/j.devcel.2015.05.010 PubMed DOI PMC

Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al.. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014; 346(6210): 763–767. doi: 10.1126/science.1257570 PubMed DOI

Lozano J, Kayukawa T, Shinoda T, Belles X. A role for Taiman in insect metamorphosis. PLoS Genet. 2014; 10(10): e1004769. doi: 10.1371/journal.pgen.1004769 PubMed DOI PMC

Jindra M, Palli SR, Riddiford LM. The juvenile hormone signaling pathway in insect development. Annu Rev Entomol. 2013; 58: 181–204. doi: 10.1146/annurev-ento-120811-153700 PubMed DOI

Liu H, Li HM, Yue Y, Song ZH, Wang JJ, Dou W. The alternative splicing of BdTai and its involvement in the development of Bactrocera dorsalis (Hendel). J Insect Physiol. 2017; 101: 132–141. doi: 10.1016/j.jinsphys.2017.07.012 PubMed DOI

Liu P, Fu X, Zhu J. Juvenile hormone-regulated alternative splicing of the taiman gene primes the ecdysteroid response in adult mosquitoes. Proc Natl Acad Sci U S A. 2018; 115(33): E7738–E7747. doi: 10.1073/pnas.1808146115 PubMed DOI PMC

Bloch G, Sullivan JP, Robinson GE. Juvenile hormone and circadian locomotor activity in the honey bee Apis mellifera. J Insect Physiol. 2002; 48(12): 1123–1131. doi: 10.1016/s0022-1910(02)00205-6 PubMed DOI

Pandey A, Motro U, Bloch G. Juvenile hormone affects the development and strength of circadian rhythms in young bumble bee (Bombus terrestris) workers. Neurobiol Sleep Circadian Rhythms. 2020; 9: 100056. doi: 10.1016/j.nbscr.2020.100056 PubMed DOI PMC

Pett JP, Kondoff M, Bordyugov G, Kramer A, Herzel H. Co-existing feedback loops generate tissue-specific circadian rhythms. Life Sci Alliance. 2018; 1(3): e201800078. doi: 10.26508/lsa.201800078 PubMed DOI PMC

Gorostiza EA, Ceriani MF. Retrograde bone morphogenetic protein signaling shapes a key circadian pacemaker circuit. J Neurosci. 2013; 33(2): 687–696. doi: 10.1523/JNEUROSCI.3448-12.2013 PubMed DOI PMC

Segraves WA, Hogness DS. The E75 ecdysone-inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes Dev. 1990; 4(2): 204–219. doi: 10.1101/gad.4.2.204 PubMed DOI

Beuchle D, Jaumouillé E, Nagoshi E. The nuclear receptor unfulfilled is required for free-running clocks in Drosophila pacemaker neurons. Curr Biol. 2012; 22(13): 1221–1227. doi: 10.1016/j.cub.2012.04.052 PubMed DOI

Dubrovsky EB, Dubrovskaya VA, Bernardo T, Otte V, DiFilippo R, Bryan H. The Drosophila FTZ-F1 nuclear receptor mediates juvenile hormone activation of E75A gene expression through an intracellular pathway. J Biol Chem. 2011; 286(38): 33689–33700. doi: 10.1074/jbc.M111.273458 PubMed DOI PMC

Smykal V, Daimon T, Kayukawa T, Takaki K, Shinoda T, Jindra M. Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev Biol. 2014; 390(2): 221–230. doi: 10.1016/j.ydbio.2014.03.006 PubMed DOI

Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, et al.. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 1998; 12(21):3343–3356. doi: 10.1101/gad.12.21.3343 PubMed DOI PMC

Dolezel D. Molecular Mechanism of the Circadian Clock. In: Numata H, Tomioka K. editors. Insect Chronobiology, Singapore: Springer; 2023. pp. 49–84. doi: 10.1007/978-981-99-0726-7_4 DOI

Tomioka K, Matsumoto A. Circadian molecular clockworks in non-model insects. Curr Opin Insect Sci. 2015; 7: 58–64. doi: 10.1016/j.cois.2014.12.006 PubMed DOI

Zhang Y, Markert MJ, Groves SC, Hardin PE, Merlin C. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc Natl Acad Sci U S A. 2017; 114(36): E7516–E7525. doi: 10.1073/pnas.1702014114 PubMed DOI PMC

Thakkar N, Giesecke A, Bazalova O, Martinek J, Smykal V, Stanewsky R, Dolezel D. Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosophila. Front Physiol. 2022; 13: 1062632. doi: 10.3389/fphys.2022.1062632 PubMed DOI PMC

Pivarciova L, Vaneckova H, Provaznik J, Wu BC, Pivarci M, Peckova O, et al.. Unexpected Geographic Variability of the Free Running Period in the Linden Bug Pyrrhocoris apterus. J Biol Rhythms. 2016; 31(6): 568–576. doi: 10.1177/0748730416671213 PubMed DOI

Smykal V, Dolezel D. Evolution of proteins involved in the final steps of juvenile hormone synthesis. J Insect Physiol. 2023; 145: 104487. doi: 10.1016/j.jinsphys.2023.104487 PubMed DOI PMC

Hejnikova M, Paroulek M, Hodkova M. Decrease in Methoprene tolerant and Taiman expression reduces juvenile hormone effects and enhances the levels of juvenile hormone circulating in males of the linden bug Pyrrhocoris apterus. J Insect Physiol. 2016; 93–94: 72–80. doi: 10.1016/j.jinsphys.2016.08.009 PubMed DOI

Hejnikova M, Nouzova M, Ramirez CE, Fernandez-Lima F, Noriega FG, Dolezel D. Sexual dimorphism of diapause regulation in the hemipteran bug Pyrrhocoris apterus. Insect Biochem Mol Biol. 2022; 142:103721. doi: 10.1016/j.ibmb.2022.103721 PubMed DOI

Venne P, Yargeau V, Segura PA. Quantification of ecdysteroids and retinoic acids in whole daphnids by liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr A. 2016; 1438: 57–64. doi: 10.1016/j.chroma.2016.02.007 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Circadian rhythms and circadian clock gene homologs of complex alga Chromera velia

. 2023 ; 14 () : 1226027. [epub] 20231208

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...