Loss of Timeless Underlies an Evolutionary Transition within the Circadian Clock
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34893879
PubMed Central
PMC8789273
DOI
10.1093/molbev/msab346
PII: 6454103
Knihovny.cz E-zdroje
- Klíčová slova
- timeless, Bilateria, Insecta, circadian clock, gene loss, reverse genetics,
- MeSH
- cirkadiánní hodiny * genetika MeSH
- cirkadiánní rytmus genetika MeSH
- Drosophila melanogaster genetika MeSH
- kryptochromy genetika MeSH
- myši MeSH
- proteiny Drosophily * genetika metabolismus MeSH
- savci metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kryptochromy MeSH
- proteiny Drosophily * MeSH
Most organisms possess time-keeping devices called circadian clocks. At the molecular level, circadian clocks consist of transcription-translation feedback loops (TTFLs). Although some components of the negative TTFL are conserved across the animals, important differences exist between typical models, such as mouse and the fruit fly. In Drosophila, the key components are PERIOD (PER) and TIMELESS (TIM-d) proteins, whereas the mammalian clock relies on PER and CRYPTOCHROME (CRY-m). Importantly, how the clock has maintained functionality during evolutionary transitions between different states remains elusive. Therefore, we systematically described the circadian clock gene setup in major bilaterian lineages and identified marked lineage-specific differences in their clock constitution. Then we performed a thorough functional analysis of the linden bug Pyrrhocoris apterus, an insect species comprising features characteristic of both the Drosophila and the mammalian clocks. Unexpectedly, the knockout of timeless-d, a gene essential for the clock ticking in Drosophila, did not compromise rhythmicity in P. apterus, it only accelerated its pace. Furthermore, silencing timeless-m, the ancestral timeless type ubiquitously present across animals, resulted in a mild gradual loss of rhythmicity, supporting its possible participation in the linden bug clock, which is consistent with timeless-m role suggested by research on mammalian models. The dispensability of timeless-d in P. apterus allows drawing a scenario in which the clock has remained functional at each step of transition from an ancestral state to the TIM-d-independent PER + CRY-m system operating in extant vertebrates, including humans.
Zobrazit více v PubMed
Allada R, Emery P, Takahashi JS, Rosbash M.. 2001. Stopping time: the genetics of fly and mouse circadian clocks. Annu Rev Neurosci. 24:1091–1119. PubMed
Allada R, White NE, So WV, Hall JC, Rosbash M.. 1998. A mutant PubMed
Bajgar A, Jindra M, Dolezel D.. 2013. Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc Natl Acad Sci U S A. 110(11):4416–4421. PubMed PMC
Bargiello TA, Jackson FR, Young MW.. 1984. Restoration of circadian behavioral rhythms by gene-transfer in PubMed
Barnes JW, Tischkau SA, Barnes JA, Mitchell JW, Burgoon PW, Hickok JR, Gillette MU.. 2003. Requirement of mammalian timeless for circadian rhythmicity. Science 302(5644):439–442. PubMed
Bazalova O, Kvicalova M, Valkova T, Slaby P, Bartos P, Netusil R, Tomanova K, Braeunig P, Lee HJ, Sauman I, et al. 2016. Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc Natl Acad Sci U S A. 113(6):1660–1665. PubMed PMC
Benna C, Bonaccorsi S, Wulbeck C, Helfrich-Forster C, Gatti M, Kyriacou CP, Costa R, Sandrelli F.. 2010. Drosophila timeless2 is required for chromosome stability and circadian photoreception. Curr Biol. 20(4):346–352. PubMed
Benna C, Scannapieco P, Piccin A, Sandrelli F, Zordan M, Rosato E, Kyriacou CP, Valle G, Costa R.. 2000. A second PubMed
Ceriani MF, Darlington TK, Staknis D, Mas P, Petti AA, Weitz CJ, Kay SA.. 1999. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285(5427):553–556. PubMed
Chiu JC, Ko HW, Edery I.. 2011. NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed. Cell 145(3):357–370. PubMed PMC
Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NRJ, Hardin PE, Young MW, Storti RV, Blau J.. 2003. PubMed
Danbara Y, Sakamoto T, Uryu O, Tomioka K.. 2010. RNA interference of PubMed
Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TDL, Weitz CJ, Takahashi JS, Kay SA.. 1998. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors PubMed
Emery P, Stanewsky R, Helfrich-Forster C, Emery-Le M, Hall JC, Rosbash M.. 2000. PubMed
Fedele G, Edwards MD, Bhutani S, Hares JM, Murbach M, Green EW, Dissel S, Hastings MH, Rosato E, Kyriacou CP.. 2014. Genetic analysis of circadian responses to low frequency electromagnetic fields in PubMed PMC
Godinho SI, Maywood ES, Shaw L, Tucci V, Barnard AR, Busino L, Pagano M, Kendall R, Quwailid MM, Romero MR, et al. 2007. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316(5826):897–900. PubMed
Gotter AL, Manganaro T, Weaver DR, Kolakowski LF, Possidente B, Sriram S, MacLaughlin DT, Reppert SM.. 2000. A time-less function for mouse timeless. Nat Neurosci. 3(8):755–756. PubMed
Grima B, Lamouroux A, Chelot E, Papin C, Limbourg-Bouchon B, Rouyer F.. 2002. The F-box protein slimb controls the levels of clock proteins period and timeless. Nature 420(6912):178–182. PubMed
Hara T, Koh K, Combs DJ, Sehgal A.. 2011. Post-translational regulation and nuclear entry of TIMELESS and PERIOD are affected in new timeless mutant. J Neurosci. 31(27):9982–9990. PubMed PMC
Hardin PE, Hall JC, Rosbash M.. 1990. Feedback of the PubMed
Helfrich-Forster C. 2001. The locomotor activity rhythm of
Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H, Nakagawa T, Lanjakornsiripan D, Nakayama KI, Fukada Y.. 2013. FBXL21 Regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152(5):1106–1118. PubMed
Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, Green CB, Zhang H, Takahashi JS.. 2012. Crystal structure of the heterodimeric CLOCK: BMAL1 transcriptional activator complex. Science 337(6091):189–194. PubMed PMC
Ikeno T, Katagiri C, Numata H, Goto SG.. 2011. Causal involvement of mammalian-type PubMed
Ikeno T, Numata H, Goto SG.. 2011. Photoperiodic response requires mammalian-type cryptochrome in the bean bug PubMed
Johnson KP, Dietrich CH, Friedrich F, Beutel RG, Wipfler B, Peters RS, Allen JM, Petersen M, Donath A, Walden KKO, et al. 2018. Phylogenomics and the evolution of hemipteroid insects. Proc Natl Acad Sci U S A. 115(50):12775–12780. PubMed PMC
Kamae Y, Tomioka K.. 2012. PubMed
Kaniewska MM, Vaněčková H, Doležel D, Kotwica-Rolinska J.. 2020. Light and temperature synchronizes locomotor activity in the Linden bug, PubMed PMC
Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EFA, Donath A, Gimnich F, Frandsen PB, Zwick A, Dos Reis M, et al. 2019. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc Natl Acad Sci U S A. 116(45):22657–22663. PubMed PMC
Koh K, Zheng X, Sehgal A.. 2006. JETLAG resets the PubMed PMC
Konopka RJ, Benzer S.. 1971. Clock mutants of PubMed PMC
Kotwica-Rolinska J, Chodakova L, Chvalova D, Kristofova L, Fenclova I, Provaznik J, Bertolutti M, Wu BC, Dolezel D.. 2019. CRISPR/Cas9 genome editing introduction and optimization in the non-model insect PubMed PMC
Kotwica-Rolinska J, Pivarciova L, Vaneckova H, Dolezel D.. 2017. The role of circadian clock genes in the photoperiodic timer of the linden bug
Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin XW, Maywood ES, Hastings MH, Reppert SM.. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98(2):193–205. PubMed
Kurien P, Hsu PK, Leon J, Wu D, McMahon T, Shi G, Xu Y, Lipzen A, Pennacchio LA, Jones CR, et al. 2019. TIMELESS mutation alters phase responsiveness and causes advanced sleep phase. Proc Natl Acad Sci U S A. 116(24):12045–12053. PubMed PMC
Martinek S, Inonog S, Manoukian AS, Young MW.. 2001. A role for the segment polarity gene PubMed
Matsumoto A, Ukai-Tadenuma M, Yamada RG, Houl J, Uno KD, Kasukawa T, Dauwalder B, Itoh TQ, Takahashi K, Ueda R, et al. 2007. A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the PubMed PMC
McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, Clarke DJ, Donath A, Escalona HE, Friedrich F, Letsch H, et al. 2019. The evolution and genomic basis of beetle diversity. Proc Natl Acad Sci U S A. 116(49):24729–24737. PubMed PMC
Menet JS, Pescatore S, Rosbash M.. 2014. CLOCK: BMAL1 is a pioneer-like transcription factor. Genes Dev. 28(1):8–13. PubMed PMC
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346(6210):763–767. PubMed
Netusil R, Tomanova K, Chodakova L, Chvalova D, Doleze D, Ritz T, Vacha M.. 2021. Cryptochrome-dependent magnetoreception in a heteropteran insect continues even after 24 h in darkness. J Exp Biol. 224(19): jeb243000. PubMed
Nose M, Tokuoka A, Bando T, Tomioka K.. 2017. PubMed
Ozkaya O, Rosato E.. 2012. The circadian clock of the fly: a neurogenetics journey through time. Adv Genet. 77:79–123. PubMed
Peres R, Amaral FG, Marques AC, Neto JC.. 2014. Melatonin production in the sea star PubMed
Peschel N, Chen KF, Szabo G, Stanewsky R.. 2009. Light-dependent interactions between the PubMed
Peschel N, Veleri S, Stanewsky R.. 2006. Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock. Proc Natl Acad Sci USA. 103(46):17313–17318. PubMed PMC
Pivarciova L, Vaneckova H, Provaznik J, Wu BC, Pivarci M, Peckova O, Bazalova O, Cada S, Kment P, Kotwica-Rolinska J, et al. 2016. Unexpected geographic variability of the free running period in the Linden bug PubMed
Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW.. 1998. Double-time is a novel PubMed
Putker M, Wong DCS, Seinkmane E, Rzechorzek NM, Zeng A, Hoyle NP, Chesham JE, Edwards MD, Feeney KA, Fischer R, et al. 2021. CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping. EMBO J. 40(7):e106745. PubMed PMC
Rothenfluh A, Abodeely M, Price JL, Young MW.. 2000. Isolation and analysis of six PubMed PMC
Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G.. 2006. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee ( PubMed PMC
Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC.. 1998. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of PubMed
Saez L, Young MW.. 1996. Regulation of nuclear entry of the PubMed
Schmid B, Helfrich-Forster C, Yoshii T.. 2011. A new ImageJ plug-in “ActogramJ” for chronobiological analyses. J Biol Rhythms. 26(5):464–467. PubMed
Sehgal A, Price JL, Man B, Young MW.. 1994. Loss of circadian behavioral rhythms and PubMed
Siepka SM, Yoo SH, Park J, Song WM, Kumar V, Hu YN, Lee C, Takahashi JS.. 2007. Circadian mutant overtime reveals F-box protein FBXL3 regulation of PubMed PMC
Smykal V, Bajgar A, Provaznik J, Fexova S, Buricova M, Takaki K, Hodkova M, Jindra M, Dolezel D.. 2014. Juvenile hormone signaling during reproduction and development of the linden bug, PubMed
Smýkal V, Pivarči M, Provazník J, Bazalová O, Jedlička P, Lukšan O, Horák A, Vaněčková H, Beneš V, Fiala I, et al. 2020. Complex rvolution of insect insulin receptors and homologous decoy receptors, and functional significance of their multiplicity. Mol Biol Evol. 37(6):1775–1789. PubMed PMC
Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC.. 1998. The PubMed
Urbanová V, Bazalová O, Vaněčková H, Dolezel D.. 2016. Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, PubMed
Wan G, Hayden AN, Iiams SE, Merlin C.. 2021. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nat Commun. 12(1):771. PubMed PMC
Wipfler B, Letsch H, Frandsen PB, Kapli P, Mayer C, Bartel D, Buckley TR, Donath A, Edgerly-Rooks JS, Fujita M.. 2019. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proc Natl Acad Sci USA. 116:3024–3029. PubMed PMC
Xia J, Guo Z, Yang Z, Han H, Wang S, Xu H, Yang X, Yang F, Wu Q, Xie W, et al. 2021. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell 184(7):1693–1705 e1617. PubMed
Xu J, Jarocha LE, Zollitsch T, Konowalczyk M, Henbest KB, Richert S, Golesworthy MJ, Schmidt J, Dejean V, Sowood DJC, et al. 2021. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594(7864):535–540. PubMed
Yoshii T, Ahmad M, Helfrich-Forster C.. 2009. Cryptochrome mediates light-dependent magnetosensitivity of drosophila's circadian clock. PLoS Biol. 7(4):e1000086. PubMed PMC
Yu WJ, Houl JH, Hardin PE.. 2011. NEMO kinase contributes to core period determination by slowing the pace of the PubMed PMC
Yuan Q, Metterville D, Briscoe AD, Reppert SM.. 2007. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol. 24(4):948–955. PubMed
Zehring WA, Wheeler DA, Reddy P, Konopka RJ, Kyriacou CP, Rosbash M, Hall JC.. 1984. P-element transformation with PubMed
Zhang L, Jones CR, Ptacek LJ, Fu YH.. 2011. The genetics of the human circadian clock. Adv Genet. 74:231–247. PubMed
Zhang Y, Markert MJ, Groves SC, Hardin PE, Merlin C.. 2017. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc Natl Acad Sci USA. 114(36):E7516–E7525. PubMed PMC
Zylka MJ, Shearman LP, Levine JD, Jin XW, Weaver DR, Reppert SM.. 1998. Molecular analysis of mammalian PubMed
Coevolution of Drosophila-type timeless with partner clock proteins
c-Jun N-terminal kinase signaling in aging
Circadian rhythms and circadian clock gene homologs of complex alga Chromera velia
Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock
Evolution of proteins involved in the final steps of juvenile hormone synthesis
Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosophila