Pigment Dispersing Factor Is a Circadian Clock Output and Regulates Photoperiodic Response in the Linden Bug, Pyrrhocoris apterus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35574487
PubMed Central
PMC9099023
DOI
10.3389/fphys.2022.884909
PII: 884909
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR/Cas9, Pyrrhocoris apterus, circadian clock, cryptochrome-m, diapause, photoperiodic clock, pigment dispersing factor,
- Publikační typ
- časopisecké články MeSH
Daily and annually cycling conditions manifested on the Earth have forced organisms to develop time-measuring devices. Circadian clocks are responsible for adjusting physiology to the daily cycles in the environment, while the anticipation of seasonal changes is governed by the photoperiodic clock. Circadian clocks are cell-autonomous and depend on the transcriptional/translational feedback loops of the conserved clock genes. The synchronization among clock centers in the brain is achieved by the modulatory function of the clock-dependent neuropeptides. In insects, the most prominent clock neuropeptide is Pigment Dispersing Factor (PDF). Photoperiodic clock measures and computes the day and/or night length and adjusts physiology accordingly to the upcoming season. The exact mechanism of the photoperiodic clock and its direct signaling molecules are unknown but, in many insects, circadian clock genes are involved in the seasonal responses. While in Drosophila, PDF signaling participates both in the circadian clock output and in diapause regulation, the weak photoperiodic response curve of D. melanogaster is a major limitation in revealing the full role of PDF in the photoperiodic clock. Here we provide the first description of PDF in the linden bug, Pyrrhocoris apterus, an organism with a robust photoperiodic response. We characterize in detail the circadian and photoperiodic phenotype of several CRISPR/Cas9-generated pdf mutants, including three null mutants and two mutants with modified PDF. Our results show that PDF acts downstream of CRY and plays a key role as a circadian clock output. Surprisingly, in contrast to the diurnal activity of wild-type bugs, pdf null mutants show predominantly nocturnal activity, which is caused by the clock-independent direct response to the light/dark switch. Moreover, we show that together with CRY, PDF is involved in the photoperiod-dependent diapause induction, however, its lack does not disrupt the photoperiodic response completely, suggesting the presence of additional clock-regulated factors. Taken together our data provide new insight into the role of PDF in the insect's circadian and photoperiodic systems.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Zoology and Biomedical Research Jagiellonian University Kraków Poland
Zobrazit více v PubMed
Agostinelli C., Lund U. (2018). R Package CircStats: Circular Statistics (Version 0.2-6). CRAN. Available at: https://cran.r-project.org/web/packages/CircStats/
Allada R., White N. E., So W. V., Hall J. C., Rosbash M. (1998). A Mutant Drosophila Homolog of Mammalian Clock Disrupts Circadian Rhythms and Transcription of Period and Timeless. Cell 93 (5), 791–804. 10.1016/s0092-8674(00)81440-3 PubMed DOI
Almagro Armenteros J. J., Tsirigos K. D., Sønderby C. K., Petersen T. N., Winther O., Brunak S., et al. (2019). SignalP 5.0 Improves Signal Peptide Predictions Using Deep Neural Networks. Nat. Biotechnol. 37 (4), 420–423. 10.1038/s41587-019-0036-z PubMed DOI
Beer K., Helfrich-Förster C. (2020). Model and Non-model Insects in Chronobiology. Front. Behav. Neurosci. 14, 601676. 10.3389/fnbeh.2020.601676 PubMed DOI PMC
Beer K., Kolbe E., Kahana N. B., Yayon N., Weiss R., Menegazzi P., et al. (2018). Pigment-Dispersing Factor-Expressing Neurons Convey Circadian Information in the Honey Bee Brain. Open Biol. 8 (1), 170224. 10.1098/rsob.170224 PubMed DOI PMC
Bertolini E., Schubert F. K., Zanini D., Sehadová H., Helfrich-Förster C., Menegazzi P. (2019). Life at High Latitudes Does Not Require Circadian Behavioral Rhythmicity under Constant Darkness. Curr. Biol. 29 (22), 3928–3936.e3. 10.1016/j.cub.2019.09.032 PubMed DOI
Denlinger D. L., Hahn D. A., Merlin C., Holzapfel C. M., Bradshaw W. E. (2017). Keeping Time without a Spine: what Can the Insect Clock Teach Us about Seasonal Adaptation? Phil. Trans. R. Soc. B 372 (1734), 20160257. 10.1098/rstb.2016.0257 PubMed DOI PMC
Gestrich J., Giese M., Shen W., Zhang Y., Voss A., Popov C., et al. (2018). Sensitivity to Pigment-Dispersing Factor (PDF) Is Cell-Type Specific Among PDF-Expressing Circadian Clock Neurons in the Madeira Cockroach. J. Biol. Rhythms 33 (1), 35–51. 10.1177/0748730417739471 PubMed DOI
Hardin P. E. (2011). Molecular Genetic Analysis of Circadian Timekeeping in Drosophila. Adv. Genet. 74, 141–173. 10.1016/B978-0-12-387690-4.00005-2 PubMed DOI PMC
Hasebe M., Shiga S. (2021). Oviposition-Promoting Pars Intercerebralis Neurons Show Period -Dependent Photoperiodic Changes in Their Firing Activity in the Bean Bug. Proc. Natl. Acad. Sci. U.S.A. 118 (9), e2018823118. 10.1073/pnas.2018823118 PubMed DOI PMC
Hasebe M., Kotaki T., Shiga S. (2022). Pigment-dispersing Factor Is Involved in Photoperiodic Control of Reproduction in the Brown-Winged green Bug, Plautia Stali. J. Insect Physiol. 137, 104359. 10.1016/j.jinsphys.2022.104359 PubMed DOI
Hassaneen E., El-Din Sallam A., Abo-Ghalia A., Moriyama Y., Karpova S. G., Abdelsalam S., et al. (2011). Pigment-dispersing Factor Affects Nocturnal Activity Rhythms, Photic Entrainment, and the Free-Running Period of the Circadian Clock in the Cricket gryllus Bimaculatus. J. Biol. Rhythms 26 (1), 3–13. 10.1177/0748730410388746 PubMed DOI
Helfrich-Förster C., Shafer O. T., Wülbeck C., Grieshaber E., Rieger D., Taghert P. (2007). Development and Morphology of the Clock-Gene-Expressing Lateral Neurons ofDrosophila Melanogaster. J. Comp. Neurol. 500 (1), 47–70. 10.1002/cne.21146 PubMed DOI
Helfrich-Förster C. (1995). The Period Clock Gene Is Expressed in central Nervous System Neurons Which Also Produce a Neuropeptide that Reveals the Projections of Circadian Pacemaker Cells within the Brain of Drosophila melanogaster . Proc. Natl. Acad. Sci. U.S.A. 92 (2), 612–616. 10.1073/pnas.92.2.612 PubMed DOI PMC
Helfrich-Förster C. (1998). Robust Circadian Rhythmicity of Drosophila melanogaster Requires the Presence of Lateral Neurons: a Brain-Behavioral Study of Disconnected Mutants. J. Comp. Physiol. A: Sensory, Neural Behav. Physiol. 182 (4), 435–453. 10.1007/s003590050192 PubMed DOI
Helfrich-Förster C. (2001). The Locomotor Activity Rhythm of Drosophila melanogaster Is Controlled by a Dual Oscillator System. J. Insect Physiol. 47 (8), 877–887. 10.1016/S0022-1910(01)00060-9 DOI
Hermann-Luibl C., Helfrich-Förster C. (2015). Clock Network in Drosophila. Curr. Opin. Insect Sci. 7, 65–70. 10.1016/j.cois.2014.11.003 PubMed DOI
Hughes M. E., Hogenesch J. B., Kornacker K. (2010). JTK_CYCLE: an Efficient Nonparametric Algorithm for Detecting Rhythmic Components in Genome-Scale Data Sets. J. Biol. Rhythms 25 (5), 372–380. 10.1177/0748730410379711 PubMed DOI PMC
Hyun S., Lee Y., Hong S.-T., Bang S., Paik D., Kang J., et al. (2005). Drosophila GPCR Han Is a Receptor for the Circadian Clock Neuropeptide PDF. Neuron 48 (2), 267–278. 10.1016/j.neuron.2005.08.025 PubMed DOI
Iiams S. E., Lugena A. B., Zhang Y., Hayden A. N., Merlin C. (2019). Photoperiodic and Clock Regulation of the Vitamin A Pathway in the Brain Mediates Seasonal Responsiveness in the Monarch Butterfly. Proc. Natl. Acad. Sci. U.S.A. 116 (50), 25214–25221. 10.1073/pnas.1913915116 PubMed DOI PMC
Ikeda K., Daimon T., Shiomi K., Udaka H., Numata H. (2021). Involvement of the Clock Gene Period in the Photoperiodism of the Silkmoth Bombyx mori . Zoolog. Sci. 38 (6), 523–530. 10.2108/zs210081 PubMed DOI
Ikeno T., Numata H., Goto S. G. (2008). Molecular Characterization of the Circadian Clock Genes in the Bean Bug, Riptortus Pedestris, and Their Expression Patterns under Long- and Short-Day Conditions. Gene 419 (1-2), 56–61. 10.1016/j.gene.2008.05.002 PubMed DOI
Ikeno T., Tanaka S. I., Numata H., Goto S. G. (2010). Photoperiodic Diapause under the Control of Circadian Clock Genes in an Insect. BMC Biol. 8, 116. 10.1186/1741-7007-8-116 PubMed DOI PMC
Ikeno T., Numata H., Goto S. G. (2011). Photoperiodic Response Requires Mammalian-type Cryptochrome in the Bean Bug Riptortus Pedestris. Biochem. Biophys. Res. Commun. 410 (3), 394–397. 10.1016/j.bbrc.2011.05.142 PubMed DOI
Ikeno T., Numata H., Goto S. G., Shiga S. (2014). The Involvement of the Brain Region Containing Pigment-Dispersing Factor-Immunoreactive Neurons in the Photoperiodic Response of the Bean Bug Riptortus Pedestris. J. Exp. Biol. 217 (Pt 3), 453–462. 10.1242/jeb.091801 PubMed DOI
Isaac R. E., Johnson E. C., Audsley N., Shirras A. D. (2007). Metabolic Inactivation of the Circadian Transmitter, Pigment Dispersing Factor (PDF), by Neprilysin-like Peptidases in Drosophila. J. Exp. Biol. 210 (Pt 24), 4465–4470. 10.1242/jeb.012088 PubMed DOI
Kaniewska M. M., Vaněčková H., Doležel D., Kotwica-Rolinska J. (2020). Light and Temperature Synchronizes Locomotor Activity in the Linden Bug, Pyrrhocoris apterus . Front. Physiol. 11, 242. 10.3389/fphys.2020.00242 PubMed DOI PMC
Koide R., Xi J., Hamanaka Y., Shiga S. (2021). Mapping PERIOD-Immunoreactive Cells with Neurons Relevant to Photoperiodic Response in the Bean Bug Riptortus Pedestris. Cell Tissue Res. 385 (3), 571–583. 10.1007/s00441-021-03451-6 PubMed DOI
Kostal V. V., Simek P. (2000). Overwintering Strategy in Pyrrhocoris apterus (Heteroptera): the Relations between Life-Cycle, Chill Tolerance and Physiological Adjustments. J. Insect Physiol. 46 (9), 1321–1329. 10.1016/S0022-1910(00)00056-1 PubMed DOI
Kotwica‐Rolinska J., Pivarciova L., Vaneckova H., Dolezel D. (2017). The Role of Circadian Clock Genes in the Photoperiodic Timer of the linden Bug P Yrrhocoris Apterus during the Nymphal Stage. Physiol. Entomol. 42 (3), 266–273. 10.1111/phen.12197 DOI
Kotwica-Rolinska J., Chodakova L., Chvalova D., Kristofova L., Fenclova I., Provaznik J., et al. (2019). CRISPR/Cas9 Genome Editing Introduction and Optimization in the Non-model Insect Pyrrhocoris apterus . Front. Physiol. 10, 891. 10.3389/fphys.2019.00891 PubMed DOI PMC
Kotwica-Rolinska J., Chodáková L., Smýkal V., Damulewicz M., Provazník J., Wu B. C.-H., et al. (2021). Loss of Timeless Underlies an Evolutionary Transition within the Circadian Clock. Mol. Biol. Evol. 39, msab346. 10.1093/molbev/msab346 PubMed DOI PMC
Kozak G. M., Wadsworth C. B., Kahne S. C., Bogdanowicz S. M., Harrison R. G., Coates B. S., et al. (2019). Genomic Basis of Circannual Rhythm in the European Corn Borer Moth. Curr. Biol. 29 (20), 3501–3509.e5. 10.1016/j.cub.2019.08.053 PubMed DOI
Kumar S., Chen D., Sehgal A. (2012). Dopamine Acts through Cryptochrome to Promote Acute Arousal in Drosophila. Genes Dev. 26 (11), 1224–1234. 10.1101/gad.186338.111 PubMed DOI PMC
Lear B. C., Merrill C. E., Lin J.-M., Schroeder A., Zhang L., Allada R. (2005). A G Protein-Coupled Receptor, Groom-Of-PDF, Is Required for PDF Neuron Action in Circadian Behavior. Neuron 48 (2), 221–227. 10.1016/j.neuron.2005.09.008 PubMed DOI
Lee C.-M., Su M.-T., Lee H.-J. (2009). Pigment Dispersing Factor: an Output Regulator of the Circadian Clock in the German Cockroach. J. Biol. Rhythms 24 (1), 35–43. 10.1177/0748730408327909 PubMed DOI
Lee G., Kikuno K., Bahn J.-H., Kim K.-M., Park J. H. (2013). Dopamine D2 Receptor as a Cellular Component Controlling Nocturnal Hyperactivities inDrosophila Melanogaster. Chronobiology Int. 30 (4), 443–459. 10.3109/07420528.2012.741169 PubMed DOI
Lin Y., Stormo G. D., Taghert P. H. (2004). The Neuropeptide Pigment-Dispersing Factor Coordinates Pacemaker Interactions in the Drosophila Circadian System. J. Neurosci. 24 (36), 7951–7957. 10.1523/JNEUROSCI.2370-04.2004 PubMed DOI PMC
Meelkop E., Temmerman L., Schoofs L., Janssen T. (2011). Signalling through Pigment Dispersing Hormone-like Peptides in Invertebrates. Prog. Neurobiol. 93 (1), 125–147. 10.1016/j.pneurobio.2010.10.004 PubMed DOI
Menegazzi P., Dalla Benetta E., Beauchamp M., Schlichting M., Steffan-Dewenter I., Helfrich-Förster C. (2017). Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids. Curr. Biol. 27 (6), 833–839. 10.1016/j.cub.2017.01.036 PubMed DOI
Mertens I., Vandingenen A., Johnson E. C., Shafer O. T., Li W., Trigg J. S., et al. (2005). PDF Receptor Signaling in Drosophila Contributes to Both Circadian and Geotactic Behaviors. Neuron 48 (2), 213–219. 10.1016/j.neuron.2005.09.009 PubMed DOI
Meuti M. E., Stone M., Ikeno T., Denlinger D. L. (2015). Functional Circadian Clock Genes Are Essential for the Overwintering Diapause of the Northern House Mosquito, Culex pipiens . J. Exp. Biol. 218 (Pt 3), 412–422. 10.1242/jeb.113233 PubMed DOI PMC
Nagy D., Cusumano P., Andreatta G., Anduaga A. M., Hermann-Luibl C., Reinhard N., et al. (2019). Peptidergic Signaling from Clock Neurons Regulates Reproductive Dormancy in Drosophila melanogaster . Plos Genet. 15 (6), e1008158. 10.1371/journal.pgen.1008158 PubMed DOI PMC
Park J. H., Hall J. C. (1998). Isolation and Chronobiological Analysis of a Neuropeptide Pigment-Dispersing Factor Gene inDrosophila Melanogaster. J. Biol. Rhythms 13 (3), 219–228. 10.1177/074873098129000066 PubMed DOI
Park J. H., Helfrich-Förster C., Lee G., Liu L., Rosbash M., Hall J. C. (2000). Differential Regulation of Circadian Pacemaker Output by Separate Clock Genes in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 97 (7), 3608–3613. 10.1073/pnas.07003619710.1073/pnas.97.7.3608 PubMed DOI PMC
Park D., Veenstra J. A., Park J. H., Taghert P. H. (2008). Mapping Peptidergic Cells in Drosophila: where DIMM Fits in. PLoS One 3 (3), e1896. 10.1371/journal.pone.0001896 PubMed DOI PMC
Pegoraro M., Flavell L. M. M., Menegazzi P., Colombi P., Dao P., Helfrich-Förster C., et al. (2020). The Genetic Basis of Diurnal Preference in Drosophila melanogaster . BMC Genomics 21 (1), 596. 10.1186/s12864-020-07020-z PubMed DOI PMC
Petri B., Stengl M. (1997). Pigment-Dispersing Hormone Shifts the Phase of the Circadian Pacemaker of the CockroachLeucophaea Maderae. J. Neurosci. 17 (11), 4087–4093. 10.1523/jneurosci.17-11-04087.1997 PubMed DOI PMC
Pivarciova L., Vaneckova H., Provaznik J., Wu B. C.-h., Pivarci M., Peckova O., et al. (2016). Unexpected Geographic Variability of the Free Running Period in the Linden Bug Pyrrhocoris apterus . J. Biol. Rhythms 31 (6), 568–576. 10.1177/0748730416671213 PubMed DOI
Pyza E., Meinertzhagen I. A. (1996). Neurotransmitters Regulate Rhythmic Size Changes Amongst Cells in the Fly's Optic Lobe. J. Comp. Physiol. A. 178 (1), 33–45. 10.1007/BF00189588 PubMed DOI
Pyza E., Meinertzhagen I. A. (1998). Neurotransmitters Alter the Numbers of Synapses and Organelles in Photoreceptor Terminals in the Lamina of the Housefly, Musca domestica . J. Comp. Physiol. A: Sensory, Neural Behav. Physiol. 183 (6), 719–727. 10.1007/s003590050294 PubMed DOI
Renn S. C. P., Park J. H., Rosbash M., Hall J. C., Taghert P. H. (1999). A Pdf Neuropeptide Gene Mutation and Ablation of PDF Neurons Each Cause Severe Abnormalities of Behavioral Circadian Rhythms in Drosophila. Cell 99 (7), 791–802. 10.1016/s0092-8674(00)81676-1 PubMed DOI
Sabado V., Vienne L., Nunes J. M., Rosbash M., Nagoshi E. (2017). Fluorescence Circadian Imaging Reveals a PDF-dependent Transcriptional Regulation of the Drosophila Molecular Clock. Sci. Rep. 7, 41560. 10.1038/srep41560 PubMed DOI PMC
Sakamoto T., Uryu O., Tomioka K. (2009). The Clock Gene Period Plays an Essential Role in Photoperiodic Control of Nymphal Development in the Cricket Modicogryllus Siamensis. J. Biol. Rhythms 24 (5), 379–390. 10.1177/0748730409341523 PubMed DOI
Sato S., Chuman Y., Matsushima A., Tominaga Y., Shimohigashi Y., Shimohigashi M. (2002). A Circadian Neuropeptide, Pigment-Dispersing Factor-PDF, in the Last-Summer Cicada Meimuna Opalifera: cDNA Cloning and Immunocytochemistry. Zoolog. Sci. 19 (8), 821–828. 10.2108/zsj.19.821 PubMed DOI
Saunders D. S., Henrich V. C., Gilbert L. I. (1989). Induction of Diapause in Drosophila melanogaster: Photoperiodic Regulation and the Impact of Arrhythmic Clock Mutations on Time Measurement. Proc. Natl. Acad. Sci. U.S.A. 86 (10), 3748–3752. 10.1073/pnas.86.10.3748 PubMed DOI PMC
Saunders D. S. (1983). A Diapause Induction-Termination Asymmetry in the Photoperiodic Responses of the Linden Bug, Pyrrhocoris apterus and an Effect of Near-Critical Photoperiods on Development. J. Insect Physiol. 29 (5), 399–405. 10.1016/0022-1910(83)90067-7 DOI
Saunders D. S. (2020). Dormancy, Diapause, and the Role of the Circadian System in Insect Photoperiodism. Annu. Rev. Entomol. 65, 373–389. 10.1146/annurev-ento-011019-025116 PubMed DOI
Saunders D. (2021). Insect Photoperiodism: Bünning's Hypothesis, the History and Development of an Idea. Eur. J. Entomol. 118 , 1–13. 10.14411/eje.2021.001 DOI
Schmid B., Helfrich-Förster C., Yoshii T. (2011). A New ImageJ Plug-In "ActogramJ" for Chronobiological Analyses. J. Biol. Rhythms 26 (5), 464–467. 10.1177/0748730411414264 PubMed DOI
Sehadova H., Sauman I., Sehnal F. (2003). Immunocytochemical Distribution of Pigment-Dispersing Hormone in the Cephalic Ganglia of Polyneopteran Insects. Cel Tissue Res. 312 (1), 113–125. 10.1007/s00441-003-0705-5 PubMed DOI
Seluzicki A., Flourakis M., Kula-Eversole E., Zhang L., Kilman V., Allada R. (2014). Dual PDF Signaling Pathways Reset Clocks via TIMELESS and Acutely Excite Target Neurons to Control Circadian Behavior. Plos Biol. 12 (3), e1001810. 10.1371/journal.pbio.1001810 PubMed DOI PMC
Shafer O. T., Taghert P. H. (2009). RNA-interference Knockdown of Drosophila Pigment Dispersing Factor in Neuronal Subsets: the Anatomical Basis of a Neuropeptide's Circadian Functions. PLoS One 4 (12), e8298. 10.1371/journal.pone.0008298 PubMed DOI PMC
Shafer O. T., Yao Z. (2014). Pigment-Dispersing Factor Signaling and Circadian Rhythms in Insect Locomotor Activity. Curr. Opin. Insect Sci. 1, 73–80. 10.1016/j.cois.2014.05.002 PubMed DOI PMC
Singaravel M., Fujisawa Y., Hisada M., Saifullah A. S. M., Tomioka K. (2003). Phase Shifts of the Circadian Locomotor Rhythm Induced by Pigment-Dispersing Factor in the Cricket Gryllus Bimaculatus. Zoolog. Sci. 20 (11), 1347–1354. 10.2108/zsj.20.1347 PubMed DOI
Socha R. (1993). Pyrrhocoris apterus (Heteroptera) - an Experimental Model Species: A Review. Eur. J. Entomol. 90, 241–286.
Southey B. R., Amare A., Zimmerman T. A., Rodriguez-Zas S. L., Sweedler J. V. (2006). NeuroPred: a Tool to Predict Cleavage Sites in Neuropeptide Precursors and Provide the Masses of the Resulting Peptides. Nucleic Acids Res. 34 (Web Server issue), W267–W272. 10.1093/nar/gkl161 PubMed DOI PMC
Tamai T., Shiga S., Goto S. G. (2019). Roles of the Circadian Clock and Endocrine Regulator in the Photoperiodic Response of the Brown-Winged green Bug Plautia Stali. Physiol. Entomol. 44 (1), 43–52. 10.1111/phen.12274 DOI
Tomioka K., Matsumoto A. (2015). Circadian Molecular Clockworks in Non-Model Insects. Curr. Opin. Insect Sci. 7, 58–64. 10.1016/j.cois.2014.12.006 PubMed DOI
Tomioka K., Matsumoto A. (2019). The Circadian System in Insects: Cellular, Molecular, and Functional Organization. Adv. Insect Physiol. 56 , 73–115. 10.1016/bs.aiip.2019.01.001 DOI
Vafopoulou X., Steel C. G. H., Terry K. L. (2007). Neuroanatomical Relations of Prothoracicotropic Hormone Neurons with the Circadian Timekeeping System in the Brain of Larval and adultRhodnius Prolixus (Hemiptera). J. Comp. Neurol. 503 (4), 511–524. 10.1002/cne.21393 PubMed DOI
Wei H., el Jundi B., Homberg U., Stengl M. (2010). Implementation of Pigment-Dispersing Factor-Immunoreactive Neurons in a Standardized Atlas of the Brain of the Cockroach Leucophaea Maderae. J. Comp. Neurol. 518 (20), 4113–4133. 10.1002/cne.22471 PubMed DOI
Yoshii T., Wulbeck C., Sehadova H., Veleri S., Bichler D., Stanewsky R., et al. (2009). The Neuropeptide Pigment-Dispersing Factor Adjusts Period and Phase of Drosophila's Clock. J. Neurosci. 29 (8), 2597–2610. 10.1523/JNEUROSCI.5439-08.2009 PubMed DOI PMC