Coevolution of Drosophila-type timeless with partner clock proteins
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40322083
PubMed Central
PMC12049834
DOI
10.1016/j.isci.2025.112338
PII: S2589-0042(25)00599-1
Knihovny.cz E-zdroje
- Klíčová slova
- Evolutionary biology, Genetics, Molecular biology, Neuroscience,
- Publikační typ
- časopisecké články MeSH
Drosophila-type timeless (dTIM) is a key clock protein in fruit flies, regulating rhythmicity and light-mediated entrainment. However, functional experiments indicate that its contribution to the clock differs in various insects. Therefore, we conducted a comprehensive phylogenetic analysis of dTIM across animals and dated its origin, gene duplications, and losses. We identified variable and conserved protein domains and pinpointed animal lineages that underwent the biggest changes in dTIM. While dTIM modifications are only mildly affected by changes in the PER protein, even the complete loss of PER in echinoderms had no impact on dTIM. However, changes in dTIM always co-occur with the loss of CRYPTOCHROMES or JETLAG. This is exemplified by the remarkably accelerated evolution of dTIM in phylloxera and aphids. Finally, alternative d-tim splicing, characteristic of Drosophila melanogaster temperature-dependent function, is conserved to some extent in Diptera, albeit with unique alterations. Altogether, this study pinpoints major changes that shaped dTIM evolution.
Biology Centre of the Czech Academy of Sciences 37005 České Budějovice Czech Republic
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
Zobrazit více v PubMed
Bhadra U., Thakkar N., Das P., Pal Bhadra M. Evolution of circadian rhythms: from bacteria to human. Sleep Med. 2017;35:49–61. doi: 10.1016/j.sleep.2017.04.008. PubMed DOI
Dunlap J.C. Molecular bases for circadian clocks. Cell. 1999;96:271–290. doi: 10.1016/s0092-8674(00)80566-8. PubMed DOI
Edgar R.S., Green E.W., Zhao Y., van Ooijen G., Olmedo M., Qin X., Xu Y., Pan M., Valekunja U.K., Feeney K.A., et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012;485:459–464. doi: 10.1038/nature11088. PubMed DOI PMC
Mendoza-Viveros L., Bouchard-Cannon P., Hegazi S., Cheng A.H., Pastore S., Cheng H.Y.M. Molecular modulators of the circadian clock: lessons from flies and mice. Cell. Mol. Life Sci. 2017;74:1035–1059. doi: 10.1007/s00018-016-2378-8. PubMed DOI PMC
Kwiatkowski E.R., Emery P. Cnidarians are CLOCKing in. Elife. 2024;13 doi: 10.7554/eLife.98512. PubMed DOI PMC
Aguillon R., Rinsky M., Simon-Blecher N., Doniger T., Appelbaum L., Levy O. CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues. Elife. 2024;12 doi: 10.7554/eLife.89499. PubMed DOI PMC
Thakkar N., Giesecke A., Bazalova O., Martinek J., Smykal V., Stanewsky R., Dolezel D. Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosophila. Front. Physiol. 2022;13 doi: 10.3389/fphys.2022.1062632. PubMed DOI PMC
Tomioka K., Matsumoto A. Circadian molecular clockworks in non-model insects. Curr. Opin. Insect Sci. 2015;7:58–64. doi: 10.1016/j.cois.2014.12.006. PubMed DOI
Allada R., White N.E., So W.V., Hall J.C., Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell. 1998;93:791–804. doi: 10.1016/S0092-8674(00)81440-3. PubMed DOI
Rutila J.E., Suri V., Le M., So W.V., Rosbash M., Hall J.C. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell. 1998;93:805–814. doi: 10.1016/S0092-8674(00)81441-5. PubMed DOI
Michael A.K., Stoos L., Crosby P., Eggers N., Nie X.Y., Makasheva K., Minnich M., Healy K.L., Weiss J., Kempf G., et al. Cooperation between bHLH transcription factors and histones for DNA access. Nature. 2023;619:385–393. doi: 10.1038/s41586-023-06282-3. PubMed DOI PMC
Tumova S., Dolezel D., M J. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects – From Clock to Hormone Reception. J. Mol. Biol. 2024;436:1–25. doi: 10.1016/j.jmb.2023.168332. PubMed DOI
Kume K., Zylka M.J., Sriram S., Shearman L.P., Weaver D.R., Jin X., Maywood E.S., Hastings M.H., Reppert S.M. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98:193–205. doi: 10.1016/S0092-8674(00)81014-4. PubMed DOI
Putker M., Wong D.C.S., Seinkmane E., Rzechorzek N.M., Zeng A., Hoyle N.P., Chesham J.E., Edwards M.D., Feeney K.A., Fischer R., et al. CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping. EMBO J. 2021;40 doi: 10.15252/embj.2020106745. PubMed DOI PMC
Yuan Q., Metterville D., Briscoe A.D., Reppert S.M. Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 2007;24:948–955. doi: 10.1093/molbev/msm011. PubMed DOI
Emery P., So W.V., Kaneko M., Hall J.C., Rosbash M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell. 1998;95:669–679. doi: 10.1016/S0092-8674(00)81637-2. PubMed DOI
Emery P., Stanewsky R., Helfrich-Förster C., Emery-Le M., Hall J.C., Rosbash M. Drosophila CRY is a deep brain circadian photoreceptor. Neuron. 2000;26:493–504. doi: 10.1016/S0896-6273(00)81181-2. PubMed DOI
Helfrich-Forster C., Winter C., Hofbauer A., Hall J.C., Stanewsky R. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron. 2001;30:249–261. doi: 10.1016/S0896-6273(01)00277-X. PubMed DOI
Collins B., Mazzoni E.O., Stanewsky R., Blau J. Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Curr. Biol. 2006;16:441–449. doi: 10.1016/j.cub.2006.01.034. PubMed DOI
Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S.A., Rosbash M., Hall J.C. The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell. 1998;95:681–692. doi: 10.1016/S0092-8674(00)81638-4. PubMed DOI
Saez L., Young M.W. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron. 1996;17:911–920. doi: 10.1016/S0896-6273(00)80222-6. PubMed DOI
Jang A.R., Moravcevic K., Saez L., Young M.W., Sehgal A. Drosophila TIM Binds Importin alpha1, and Acts as an Adapter to Transport PER to the Nucleus. PLoS Genet. 2015;11 doi: 10.1371/journal.pgen.1004974. PubMed DOI PMC
Lin C., Feng S., DeOliveira C.C., Crane B.R. Cryptochrome-Timeless structure reveals circadian clock timing mechanisms. Nature. 2023;617:194–199. doi: 10.1038/s41586-023-06009-4. PubMed DOI PMC
Meyer P., Saez L., Young M.W. PER-TIM interactions in living Drosophila cells: An interval timer for the circadian clock. Science. 2006;311:226–229. doi: 10.1126/science.1118126. PubMed DOI
Saez L., Derasmo M., Meyer P., Stieglitz J., Young M.W. A Key Temporal Delay in the Circadian Cycle of Drosophila Is Mediated by a Nuclear Localization Signal in the Timeless Protein. Genetics. 2011;188:591–600. doi: 10.1534/genetics.111.127225. PubMed DOI PMC
Singh S., Giesecke A., Damulewicz M., Fexova S., Mazzotta G.M., Stanewsky R., Dolezel D. New Drosophila Circadian Clock Mutants Affecting Temperature Compensation Induced by Targeted Mutagenesis of Timeless. Front. Physiol. 2019;10:1442. doi: 10.3389/fphys.2019.01442. PubMed DOI PMC
Giesecke A., Johnstone P.S., Lamaze A., Landskron J., Atay E., Chen K.F., Wolf E., Top D., Stanewsky R. A novel period mutation implicating nuclear export in temperature compensation of the Drosophila circadian clock. Curr. Biol. 2023;33:336–350.e5. doi: 10.1016/j.cub.2022.12.011. PubMed DOI
Top D., Harms E., Syed S., Adams E.L., Saez L. GSK-3 and CK2 Kinases Converge on Timeless to Regulate the Master Clock. Cell Rep. 2016;16:357–367. doi: 10.1016/j.celrep.2016.06.005. PubMed DOI PMC
Peschel N., Chen K.F., Szabo G., Stanewsky R. Light-Dependent Interactions between the Drosophila Circadian Clock Factors Cryptochrome, Jetlag, and Timeless. Curr. Biol. 2009;19:241–247. doi: 10.1016/j.cub.2008.12.042. PubMed DOI
Emery P., Stanewsky R., Hall J.C., Rosbash M. Drosophila cryptochromes - A unique circadian-rhythm photoreceptor. Nature. 2000;404:456–457. doi: 10.1038/35006558. PubMed DOI
Dolezelova E., Dolezel D., Hall J.C. Rhythm defects caused by newly engineered null mutations in Drosophila's cryptochrome gene. Genetics. 2007;177:329–345. doi: 10.1534/genetics.107.076513. PubMed DOI PMC
Peschel N., Veleri S., Stanewsky R. Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock. Proc. Natl. Acad. Sci. USA. 2006;103:17313–17318. doi: 10.1073/pnas.0606675103. PubMed DOI PMC
Koh K., Zheng X., Sehgal A. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science. 2006;312:1809–1812. doi: 10.1126/science.1124951. PubMed DOI PMC
Ozturk N., VanVickle-Chavez S.J., Akileswaran L., Van Gelder R.N., Sancar A. Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex. Proc. Natl. Acad. Sci. USA. 2013;110:4980–4985. doi: 10.1073/pnas.1303234110. PubMed DOI PMC
Iiams S.E., Wan G., Zhang J., Lugena A.B., Zhang Y., Hayden A.N., Merlin C. Loss of functional cryptochrome 1 reduces robustness of 24-hour behavioral rhythms in monarch butterflies. iScience. 2024;27 doi: 10.1016/j.isci.2024.108980. PubMed DOI PMC
Tobita H., Kiuchi T. Knockout of cryptochrome 1 disrupts circadian rhythm and photoperiodic diapause induction in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2024;172 doi: 10.1016/j.ibmb.2024.104153. PubMed DOI
Poupardin R., Schöttner K., Korbelová J., Provazník J., Doležel D., Pavlinic D., Beneš V., Koštál V. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genom. 2015;16:720. doi: 10.1186/s12864-015-1907-4. PubMed DOI PMC
Stehlik J., Zavodska R., Shimada K., Sauman I., Kostal V. Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. J. Biol. Rhythm. 2008;23:129–139. doi: 10.1177/0748730407313364. PubMed DOI
Kobelkova A., Bajgar A., Dolezel D. Functional Molecular Analysis of a Circadian Clock Gene timeless Promoter from the Drosophilid Fly Chymomyza costata. J. Biol. Rhythm. 2010;25:399–409. doi: 10.1177/0748730410385283. PubMed DOI
Kostal V. Eco-physiological phases of insect diapause. J. Insect Physiol. 2006;52:113–127. doi: 10.1016/j.jinsphys.2005.09.008. PubMed DOI
Tauber E., Zordan M., Sandrelli F., Pegoraro M., Osterwalder N., Breda C., Daga A., Selmin A., Monger K., Benna C., et al. Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science. 2007;316:1895–1898. doi: 10.1126/science.1138412. PubMed DOI
Abrieux A., Xue Y., Cai Y., Lewald K.M., Nguyen H.N., Zhang Y., Chiu J.C. EYES ABSENT and TIMELESS integrate photoperiodic and temperature cues to regulate seasonal physiology in Drosophila. Proc. Natl. Acad. Sci. USA. 2020;117:15293–15304. doi: 10.1073/pnas.2004262117. PubMed DOI PMC
Saunders D.S., Henrich V.C., Gilbert L.I. Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc. Natl. Acad. Sci. USA. 1989;86:3748–3752. PubMed PMC
Tobita H., Kiuchi T. Knockouts of positive and negative elements of the circadian clock disrupt photoperiodic diapause induction in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2022;149 doi: 10.1016/j.ibmb.2022.103842. PubMed DOI
Zoltowski B.D., Vaidya A.T., Top D., Widom J., Young M.W., Crane B.R. Structure of full-length Drosophila cryptochrome. Nature. 2011;480:396–399. doi: 10.1038/Nature10618. PubMed DOI PMC
Levy C., Zoltowski B.D., Jones A.R., Vaidya A.T., Top D., Widom J., Young M.W., Scrutton N.S., Crane B.R., Leys D. Updated structure of Drosophila cryptochrome. Nature. 2013;495:E3–E4. doi: 10.1038/nature11995. PubMed DOI PMC
Czarna A., Berndt A., Singh H.R., Grudziecki A., Ladurner A.G., Timinszky G., Kramer A., Wolf E. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell. 2013;153:1394–1405. doi: 10.1016/j.cell.2013.05.011. PubMed DOI
Yildiz O., Doi M., Yujnovsky I., Cardone L., Berndt A., Hennig S., Schulze S., Urbanke C., Sassone-Corsi P., Wolf E. Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD. Mol. Cell. 2005;17:69–82. doi: 10.1016/j.molcel.2004.11.022. PubMed DOI
Grabarczyk D.B. Crystal structure and interactions of the Tof1-Csm3 (Timeless-Tipin) fork protection complex. Nucleic Acids Res. 2020;48:6996–7004. doi: 10.1093/nar/gkaa456. PubMed DOI PMC
Rosato E., Trevisan A., Sandrelli F., Zordan M., Kyriacou C.P., Costa R. Conceptual translation of timeless reveals alternative initiating methionines in Drosophila. Nucleic Acids Res. 1997;25:455–458. doi: 10.1093/nar/25.3.455. PubMed DOI PMC
Sandrelli F., Tauber E., Pegoraro M., Mazzotta G., Cisotto P., Landskron J., Stanewsky R., Piccin A., Rosato E., Zordan M., et al. A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science. 2007;316:1898–1900. doi: 10.1126/science.1138426. PubMed DOI
Lamaze A., Chen C., Leleux S., Xu M., George R., Stanewsky R. A natural timeless polymorphism allowing circadian clock synchronization in “white nights”. Nat. Commun. 2022;13:1724. doi: 10.1038/s41467-022-29293-6. PubMed DOI PMC
Deppisch P., Prutscher J.M., Pegoraro M., Tauber E., Wegener C., Helfrich-Förster C. Adaptation of Drosophila melanogaster to Long Photoperiods of High-Latitude Summers Is Facilitated by the ls-Timeless Allele. J. Biol. Rhythms. 2022;37:185–201. doi: 10.1177/07487304221082448. PubMed DOI PMC
Benna C., Bonaccorsi S., Wülbeck C., Helfrich-Förster C., Gatti M., Kyriacou C.P., Costa R., Sandrelli F. Drosophila timeless2 is required for chromosome stability and circadian photoreception. Curr. Biol. 2010;20:346–352. doi: 10.1016/j.cub.2009.12.048. PubMed DOI
Kotwica-Rolinska J., Chodakova L., Smykal V., Damulewicz M., Provaznik J., Wu B.C., Hejnikova M., Chvalova D., Dolezel D. Loss of Timeless Underlies an Evolutionary Transition within the Circadian Clock. Mol. Biol. Evol. 2022;39 doi: 10.1093/molbev/msab346. PubMed DOI PMC
Nose M., Tokuoka A., Bando T., Tomioka K. timeless2 plays an important role in reproduction and circadian rhythms in the cricket Gryllus bimaculatus. J. Insect Physiol. 2018;105:9–17. doi: 10.1016/j.jinsphys.2017.12.007. PubMed DOI
Kurien P., Hsu P.K., Leon J., Wu D., McMahon T., Shi G., Xu Y., Lipzen A., Pennacchio L.A., Jones C.R., et al. TIMELESS mutation alters phase responsiveness and causes advanced sleep phase. Proc. Natl. Acad. Sci. USA. 2019;116:12045–12053. doi: 10.1073/pnas.1819110116. PubMed DOI PMC
Baretic D., Jenkyn-Bedford M., Aria V., Cannone G., Skehel M., Yeeles J.T.P. Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork. Mol. Cell. 2020;78:926–940.e13. doi: 10.1016/j.molcel.2020.04.012. PubMed DOI PMC
Unsal-Kacmaz K., Mullen T.E., Kaufmann W.K., Sancar A. Coupling of human circadian and cell cycles by the timeless protein. Mol. Cell Biol. 2005;25:3109–3116. doi: 10.1128/MCB.25.8.3109-3116.2005. PubMed DOI PMC
Rubin E.B., Shemesh Y., Cohen M., Elgavish S., Robertson H.M., Bloch G. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res. 2006;16:1352–1365. doi: 10.1101/gr.5094806. PubMed DOI PMC
Dolezel D. In: Insect Chronobiology. 1st edn. Numata H., Tomioka K., editors. Springer; 2023. Molecular Mechanism of the Circadian Clock; pp. 49–84. DOI
Deppisch P., Kirsch V., Helfrich-Forster C., Senthilan P.R. Contribution of cryptochromes and photolyases for insect life under sunlight. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2023;209:373–389. doi: 10.1007/s00359-022-01607-5. PubMed DOI PMC
Kamae Y., Tomioka K. Timeless is an essential component of the circadian clock in a primitive insect, the firebrat Thermobia domestica. J. Biol. Rhythms. 2012;27:126–134. doi: 10.1177/0748730411435997. PubMed DOI
Danbara Y., Sakamoto T., Uryu O., Tomioka K. RNA interference of timeless gene does not disrupt circadian locomotor rhythms in the cricket Gryllus bimaculatus. J. Insect Physiol. 2010;56:1738–1745. doi: 10.1016/j.jinsphys.2010.07.002. PubMed DOI
Werckenthin A., Huber J., Arnold T., Koziarek S., Plath M.J.A., Plath J.A., Stursberg O., Herzel H., Stengl M. Neither per, nor tim1, nor cry2 alone are essential components of the molecular circadian clockwork in the Madeira cockroach. PLoS One. 2020;15 doi: 10.1371/journal.pone.0235930. PubMed DOI PMC
Gotter A.L., Manganaro T., Weaver D.R., Kolakowski L.F., Possidente B., Sriram S., MacLaughlin D.T., Reppert S.M. A time-less function for mouse Timeless. Nat. Neurosci. 2000;3:755–756. PubMed
Barnes J.W., Tischkau S.A., Barnes J.A., Mitchell J.W., Burgoon P.W., Hickok J.R., Gillette M.U. Requirement of mammalian Timeless for circadian rhythmicity. Science. 2003;302:439–442. doi: 10.1126/science.1086593. PubMed DOI
Hasegawa K., Saigusa T., Tamai Y. Caenorhabditis elegans opens up new insights into circadian clock mechanisms. Chronobiol. Int. 2005;22:1–19. doi: 10.1081/cbi-200038149. PubMed DOI
Sehgal A., Rothenfluhhilfiker A., Hunterensor M., Chen Y., Myers M.P., Young M.W. Rhythmic Expression of Timeless - a Basis for Promoting Circadian Cycles in Period Gene Autoregulation. Science. 1995;270:808–810. doi: 10.1126/science.270.5237.808. PubMed DOI
Rothenfluh A., Abodeely M., Price J.L., Young M.W. Isolation and analysis of six timeless alleles that cause short- or long-period circadian rhythms in Drosophila. Genetics. 2000;156:665–675. doi: 10.1093/genetics/156.2.665. PubMed DOI PMC
Rothenfluh A., Young M.W., Saez L. A TIMELESS-independent function for PERIOD proteins in the Drosophila clock. Neuron. 2000;26:505–514. doi: 10.1016/S0896-6273(00)81182-4. PubMed DOI
Matsumoto A., Tomioka K., Chiba Y., Tanimura T. timrit Lengthens circadian period in a temperature-dependent manner through suppression of PERIOD protein cycling and nuclear localization. Mol. Cell Biol. 1999;19:4343–4354. doi: 10.1128/MCB.19.6.4343. PubMed DOI PMC
Thakkar N., Hejzlarova A., Brabec V., Dolezel D. Germline Editing of Drosophila Using CRISPR-Cas9-based Cytosine and Adenine Base Editors. CRISPR J. 2023;6:557–569. doi: 10.1089/crispr.2023.0026. PubMed DOI
Cai Y.D., Xue Y., Truong C.C., Del Carmen-Li J., Ochoa C., Vanselow J.T., Murphy K.A., Li Y.H., Liu X., Kunimoto B.L., et al. CK2 Inhibits TIMELESS Nuclear Export and Modulates CLOCK Transcriptional Activity to Regulate Circadian Rhythms. Curr. Biol. 2021;31:502–514.e7. doi: 10.1016/j.cub.2020.10.061. PubMed DOI PMC
Lindestad O., Nylin S., Wheat C.W., Gotthard K. Local adaptation of life cycles in a butterfly is associated with variation in several circadian clock genes. Mol. Ecol. 2022;31:1461–1475. doi: 10.1111/mec.16331. PubMed DOI
Bernatowicz P.P., Kotwica-Rolinska J., Joachimiak E., Sikora A., Polanska M.A., Pijanowska J., Bębas P. Temporal Expression of the Clock Genes in the Water Flea Daphnia pulex (Crustacea: Cladocera) J. Exp. Zool. A Ecol. Genet. Physiol. 2016;325:233–254. doi: 10.1002/jez.2015. PubMed DOI
Bazalova O., Kvicalova M., Valkova T., Slaby P., Bartos P., Netusil R., Tomanova K., Braeunig P., Lee H.J., Sauman I., et al. Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc. Natl. Acad. Sci. USA. 2016;113:1660–1665. doi: 10.1073/pnas.1518622113. PubMed DOI PMC
Colizzi F.S., Beer K., Cuti P., Deppisch P., Martínez Torres D., Yoshii T., Helfrich-Förster C. Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid. Front. Physiol. 2021;12 doi: 10.3389/fphys.2021.705048. PubMed DOI PMC
Vaidya A.T., Top D., Manahan C.C., Tokuda J.M., Zhang S., Pollack L., Young M.W., Crane B.R. Flavin reduction activates Drosophila cryptochrome. Proc. Natl. Acad. Sci. USA. 2013;110:20455–20460. doi: 10.1073/pnas.1313336110. PubMed DOI PMC
Barbera M., Collantes-Alegre J.M., Martinez-Torres D. Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. Insect Biochem. Mol. Biol. 2017;83:54–67. doi: 10.1016/j.ibmb.2017.02.006. PubMed DOI
Koike N., Hida A., Numano R., Hirose M., Sakaki Y., Tei H. Identification of the mammalian homologues of the Drosophila timeless gene, Timeless1. FEBS Lett. 1998;441:427–431. doi: 10.1016/s0014-5793(98)01597-x. PubMed DOI
Boothroyd C.E., Wijnen H., Naef F., Saez L., Young M.W. Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet. 2007;3 doi: 10.1371/journal.pgen.0030054. PubMed DOI PMC
Montelli S., Mazzotta G., Vanin S., Caccin L., Corrà S., De Pittà C., Boothroyd C., Green E.W., Kyriacou C.P., Costa R. period and timeless mRNA Splicing Profiles under Natural Conditions in Drosophila melanogaster. J. Biol. Rhythms. 2015;30:217–227. doi: 10.1177/0748730415583575. PubMed DOI
Shakhmantsir I., Nayak S., Grant G.R., Sehgal A. Spliceosome factors target timeless (tim) mRNA to control clock protein accumulation and circadian behavior in Drosophila. Elife. 2018;7 doi: 10.7554/eLife.39821. PubMed DOI PMC
Martin Anduaga A., Evantal N., Patop I.L., Bartok O., Weiss R., Kadener S. Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. Elife. 2019;8 doi: 10.7554/eLife.44642. PubMed DOI PMC
Foley L.E., Ling J., Joshi R., Evantal N., Kadener S., Emery P. Drosophila PSI controls circadian period and the phase of circadian behavior under temperature cycle via tim splicing. Elife. 2019;8 doi: 10.7554/eLife.50063. PubMed DOI PMC
Bazalova O., Dolezel D. Daily Activity of the Housefly, Musca domestica, Is Influenced by Temperature Independent of 3' UTR period Gene Splicing. G3 (Bethesda) 2017;7:2637–2649. doi: 10.1534/g3.117.042374. PubMed DOI PMC
Perrigault M., Tran D. Identification of the Molecular Clockwork of the Oyster Crassostrea gigas. PLoS One. 2017;12 doi: 10.1371/journal.pone.0169790. PubMed DOI PMC
Zantke J., Ishikawa-Fujiwara T., Arboleda E., Lohs C., Schipany K., Hallay N., Straw A.D., Todo T., Tessmar-Raible K. Circadian and circalunar clock interactions in a marine annelid. Cell Rep. 2013;5:99–113. doi: 10.1016/j.celrep.2013.08.031. PubMed DOI PMC
Palmer J.D. Dueling hypotheses: circatidal versus circalunidian battle basics. Chronobiol. Int. 1997;14:337–346. doi: 10.3109/07420529709001455. PubMed DOI
Kwiatkowski E.R., Schnytzer Y., Rosenthal J.J.C., Emery P. Behavioral circatidal rhythms require Bmal1 in Parhyale hawaiensis. Curr. Biol. 2023;33:1867–1882.e5. doi: 10.1016/j.cub.2023.03.015. PubMed DOI PMC
Ceriani M.F., Darlington T.K., Staknis D., Más P., Petti A.A., Weitz C.J., Kay S.A. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science. 1999;285:553–556. doi: 10.1126/science.285.5427.553. PubMed DOI
Busza A., Emery-Le M., Rosbash M., Emery P. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science. 2004;304:1503–1506. doi: 10.1126/science.1096973. PubMed DOI
D'Costa A., Reifegerste R., Sierra S., Moses K. The Drosophila ramshackle gene encodes a chromatin-associated protein required for cell morphology in the developing eye. Mech. Dev. 2006;123:591–604. doi: 10.1016/j.mod.2006.06.007. PubMed DOI
Kaniewska M.M., Vaněčková H., Doležel D., Kotwica-Rolinska J. Light and Temperature Synchronizes Locomotor Activity in the Linden Bug, Pyrrhocoris apterus. Front. Physiol. 2020;11:242. doi: 10.3389/fphys.2020.00242. PubMed DOI PMC
R R., Pruser T., Schulz N.K.E., Mayer P.M.F., Ogueta M., Stanewsky R., Kurtz J. Deciphering a Beetle Clock: Individual and Sex-Dependent Variation in Daily Activity Patterns. J. Biol. Rhythm. 2024;39:484–501. doi: 10.1177/07487304241263619. PubMed DOI PMC
Smýkal V., Tobita H., Dolezel D. Evolution of circadian clock and light-input pathway genes in Hemiptera. Insect Biochem. Mol. Biol. 2025;180 doi: 10.1016/j.ibmb.2025.104298. PubMed DOI
Evangelista D.A., Wipfler B., Bethoux O., Donath A., Fujita M., Kohli M.K., Legendre F., Liu S., Machida R., Misof B., et al. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea) Proc. Biol. Sci. 2019;286 doi: 10.1098/rspb.2018.2076. PubMed DOI PMC
Bertolini E., Schubert F.K., Zanini D., Sehadová H., Helfrich-Förster C., Menegazzi P. Life at High Latitudes Does Not Require Circadian Behavioral Rhythmicity under Constant Darkness. Curr. Biol. 2019;29:3928–3936.e3. doi: 10.1016/j.cub.2019.09.032. PubMed DOI
Ikeno T., Tanaka S.I., Numata H., Goto S.G. Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol. 2010;8:116. doi: 10.1186/1741-7007-8-116. PubMed DOI PMC
Urbanova V., Bazalova O., Vaneckova H., Dolezel D. Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 2016;70:184–190. doi: 10.1016/j.ibmb.2016.01.003. PubMed DOI
Kotwica-Rolinska J., Damulewicz M., Chodakova L., Kristofova L., Dolezel D. Pigment Dispersing Factor Is a Circadian Clock Output and Regulates Photoperiodic Response in the Linden Bug, Pyrrhocoris apterus. Front. Physiol. 2022;13 doi: 10.3389/fphys.2022.884909. PubMed DOI PMC
Takekata H., Numata H., Shiga S., Goto S.G. Silencing the circadian clock gene Clock using RNAi reveals dissociation of the circatidal clock from the circadian clock in the mangrove cricket. J. Insect Physiol. 2014;68:16–22. doi: 10.1016/j.jinsphys.2014.06.012. PubMed DOI
Zhang L., Green E.W., Webster S.G., Hastings M.H., Wilcockson D.C., Kyriacou C.P. Correction: The circadian clock gene bmal1 is necessary for co-ordinated circatidal rhythms in the marine isopod Eurydice pulchra (Leach) PLoS Genet. 2023;19 doi: 10.1371/journal.pgen.1011047. PubMed DOI PMC
Stöver B.C., Müller K.F. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinf. 2010;11:7. doi: 10.1186/1471-2105-11-7. PubMed DOI PMC
Kumar S., Suleski M., Craig J.M., Kasprowicz A.E., Sanderford M., Li M., Stecher G., Hedges S.B. TimeTree 5: An Expanded Resource for Species Divergence Times. Mol. Biol. Evol. 2022;39 doi: 10.1093/molbev/msac174. PubMed DOI PMC
Price M.N., Dehal P.S., Arkin A.P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009;26:1641–1650. doi: 10.1093/molbev/msp077. PubMed DOI PMC
Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., Frandsen P.B., Ware J., Flouri T., Beutel R.G., et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–767. doi: 10.1126/science.1257570. PubMed DOI
von Reumont B.M., Jenner R.A., Wills M.A., Dell'ampio E., Pass G., Ebersberger I., Meyer B., Koenemann S., Iliffe T.M., Stamatakis A., et al. Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol. Biol. Evol. 2012;29:1031–1045. doi: 10.1093/molbev/msr270. PubMed DOI
Thomas G.W.C., Dohmen E., Hughes D.S.T., Murali S.C., Poelchau M., Glastad K., Anstead C.A., Ayoub N.A., Batterham P., Bellair M., et al. Gene content evolution in the arthropods. Genome Biol. 2020;21:15. doi: 10.1186/s13059-019-1925-7. PubMed DOI PMC
Bernot J.P., Owen C.L., Wolfe J.M., Meland K., Olesen J., Crandall K.A. Major Revisions in Pancrustacean Phylogeny and Evidence of Sensitivity to Taxon Sampling. Mol. Biol. Evol. 2023;40 doi: 10.1093/molbev/msad175. PubMed DOI PMC
Wipfler B., Letsch H., Frandsen P.B., Kapli P., Mayer C., Bartel D., Buckley T.R., Donath A., Edgerly-Rooks J.S., Fujita M., et al. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proc. Natl. Acad. Sci. USA. 2019;116:3024–3029. doi: 10.1073/pnas.1817794116. PubMed DOI PMC
Johnson K.P., Dietrich C.H., Friedrich F., Beutel R.G., Wipfler B., Peters R.S., Allen J.M., Petersen M., Donath A., Walden K.K.O., et al. Phylogenomics and the evolution of hemipteroid insects. Proc. Natl. Acad. Sci. USA. 2018;115:12775–12780. doi: 10.1073/pnas.1815820115. PubMed DOI PMC
McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D.J., Donath A., Escalona H.E., Friedrich F., Letsch H., et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. USA. 2019;116:24729–24737. doi: 10.1073/pnas.1909655116. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Smykal V., Pivarci M., Provaznik J., Bazalova O., Jedlicka P., Luksan O., Horak A., Vaneckova H., Benes V., Fiala I., et al. Complex Evolution of Insect Insulin Receptors and Homologous Decoy Receptors, and Functional Significance of Their Multiplicity. Mol. Biol. Evol. 2020;37:1775–1789. doi: 10.1093/molbev/msaa048. PubMed DOI PMC
Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics. 2021;37:4572–4574. doi: 10.1093/bioinformatics/btab705. PubMed DOI PMC
Wulbeck C., Szabo G., Shafer O.T., Helfrich-Forster C., Stanewsky R. The novel Drosophila tim(blind) mutation affects behavioral rhythms but not periodic eclosion. Genetics. 2005;169:751–766. doi: 10.1534/genetics.104.036244. PubMed DOI PMC
Smykal V., Dolezel D. Evolution of proteins involved in the final steps of juvenile hormone synthesis. J. Insect Physiol. 2023;145 doi: 10.1016/j.jinsphys.2023.104487. PubMed DOI PMC
Dryad
10.5061/dryad.44j0zpcq0