• This record comes from PubMed

New Drosophila Circadian Clock Mutants Affecting Temperature Compensation Induced by Targeted Mutagenesis of Timeless

. 2019 ; 10 () : 1442. [epub] 20191203

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Drosophila melanogaster has served as an excellent genetic model to decipher the molecular basis of the circadian clock. Two key proteins, PERIOD (PER) and TIMELESS (TIM), are particularly well explored and a number of various arrhythmic, slow, and fast clock mutants have been identified in classical genetic screens. Interestingly, the free running period (tau, τ) is influenced by temperature in some of these mutants, whereas τ is temperature-independent in other mutant lines as in wild-type flies. This, so-called "temperature compensation" ability is compromised in the mutant timeless allele "ritsu" (tim rit ), and, as we show here, also in the tim blind allele, mapping to the same region of TIM. To test if this region of TIM is indeed important for temperature compensation, we generated a collection of new mutants and mapped functional protein domains involved in the regulation of τ and in general clock function. We developed a protocol for targeted mutagenesis of specific gene regions utilizing the CRISPR/Cas9 technology, followed by behavioral screening. In this pilot study, we identified 20 new timeless mutant alleles with various impairments of temperature compensation. Molecular characterization revealed that the mutations included short in-frame insertions, deletions, or substitutions of a few amino acids resulting from the non-homologous end joining repair process. Our protocol is a fast and cost-efficient systematic approach for functional analysis of protein-coding genes and promoter analysis in vivo. Interestingly, several mutations with a strong temperature compensation defect map to one specific region of TIM. Although the exact mechanism of how these mutations affect TIM function is as yet unknown, our in silico analysis suggests they affect a putative nuclear export signal (NES) and phosphorylation sites of TIM. Immunostaining for PER was performed on two TIM mutants that display longer τ at 25°C and complete arrhythmicity at 28°C. Consistently with the behavioral phenotype, PER immunoreactivity was reduced in circadian clock neurons of flies exposed to elevated temperatures.

See more in PubMed

Agrawal P., Hardin P. E. (2016). An RNAi screen to identify protein phosphatases that function within the Drosophila circadian clock. G3-Genes Genomes Genet. 6 4227–4238. 10.1534/g3.116.035345 PubMed DOI PMC

Arrhenius S. (1889). Über die reaktionsgeschwindigkeit bei der inversion von Rohrzucker durch Saeuren. Zeitschrit fuer physikalische Chemie 4 226–248.

Ashmore L. J., Sathyanarayanan S., Silvestre D. W., Emerson M. M., Schotland P., Sehgal A. (2003). Novel insights into the regulation of the timeless protein. J. Neurosci. 23 7810–7819. 10.1523/jneurosci.23-21-07810.2003 PubMed DOI PMC

Baylies M. K., Vosshall L. B., Sehgal A., Young M. W. (1992). New short period mutations of the Drosophila clock gene per. Neuron 9 575–581. 10.1016/0896-6273(92)90194-i PubMed DOI

Bazalova O., Dolezel D. (2017). Daily activity of the housefly, musca domestica, is influenced by temperature independent of 3′ UTR period gene splicing. G3-Genes Genomes Genet. 7 2637–2649. 10.1534/g3.117.042374 PubMed DOI PMC

Bazalova O., Kvicalova M., Valkova T., Slaby P., Bartos P., Netusil R., et al. (2016). Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc. Natl. Acad. Sci. U.S.A. 113 1660–1665. 10.1073/pnas.1518622113 PubMed DOI PMC

Boothroyd C. E., Wijnen H., Naef F., Saez L., Young M. W. (2007). Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet. 3:e54. 10.1371/journal.pgen.0030054 PubMed DOI PMC

Busza A., Emery-Le M., Rosbash M., Emery P. (2004). Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 304 1503–1506. 10.1126/science.1096973 PubMed DOI

Ceriani M. F., Darlington T. K., Staknis D., Mas P., Petti A. A., Weitz C. J., et al. (1999). Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285 553–556. 10.1126/science.285.5427.553 PubMed DOI

Chiu J. C., Ko H. W., Edery I. (2011). NEMO/NLK Phosphorylates PERIOD to initiate a time delay phosphorylation circuit that sets circadian clock speed. Cell 145 357–370. 10.1016/j.cell.2011.04.002 PubMed DOI PMC

Curtiz M., Wallis B. H. (1942). Round Up the Usual Suspects. Casablanca Warner Bros. Burbank, CA: First National Pictures.

Darlington T. K., Wager-Smith K., Ceriani M. F., Staknis D., Gekakis N., Steeves T. D. L., et al. (1998). Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280 1599–1603. 10.1126/science.280.5369.1599 PubMed DOI

Diernfellner A., Colot H. V., Dintsis O., Loros J. J., Dunlap J. C., Brunner M. (2007). Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett. 581 5759–5764. 10.1016/j.febslet.2007.11.043 PubMed DOI PMC

Dolezelova E., Dolezel D., Hall J. C. (2007). Rhythm defects caused by newly engineered null mutations in Drosophila’s cryptochrome gene. Genetics 177 329–345. 10.1534/genetics.107.076513 PubMed DOI PMC

Edery I., Zwiebel L. J., Dembinska M. E., Rosbash M. (1994). Temporal phosphorylation of the Drosophila period protein. Proc. Natl. Acad. Sci. U.S.A. 91 2260–2264. 10.1073/pnas.91.6.2260 PubMed DOI PMC

Fang Y., Sathyanarayanan S., Sehgal A. (2007). Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). Genes Dev. 21 1506–1518. 10.1101/gad.1541607 PubMed DOI PMC

Fexová S. (2010). Circadian Clock of Two Insect Model Species - Drosophila Melanogaster and Tribolium Castaneum. MSc thesis, University of South Bohemia, České Budějovice.

Fung H. Y., Fu S. C., Brautigam C. A., Chook Y. M. (2015). Structural determinants of nuclear export signal orientation in binding to exportin CRM1. eLife 4:10034. 10.7554/eLife.10034 PubMed DOI PMC

Glaser F. T., Stanewsky R. (2005). Temperature synchronization of the Drosophila circadian clock. Curr. Biol. 15 1352–1363. 10.1016/j.cub.2005.06.056 PubMed DOI

Glossop N. R., Lyons L. C., Hardin P. E. (1999). Interlocked feedback loops within the Drosophila circadian oscillator. Science 286 766–768. 10.1126/science.286.5440.766 PubMed DOI

Hamblen M. J., White N. E., Emery P., Kaiser K., Hall J. C. (1998). Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types. Genetics 149 165–178. PubMed PMC

Hara T., Koh K., Combs D. J., Sehgal A. (2011). Post-translational regulation and nuclear entry of TIMELESS and PERIOD are affected in new timeless mutant. J. Neurosci. 31 9982–9990. 10.1523/JNEUROSCI.0993-11.2011 PubMed DOI PMC

Hardin P. E. (2011). Molecular genetic analysis of circadian timekeeping in Drosophila. Genet. Circadian Rhythms 74 141–173. 10.1016/B978-0-12-387690-4.00005-2 PubMed DOI PMC

Hardin P. E., Hall J. C., Rosbash M. (1990). Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343 536–540. 10.1038/343536a0 PubMed DOI

Hardin P. E., Hall J. C., Rosbash M. (1992). Circadian oscillations in period gene messenger-RNA levels are transcriptionally regulated. Proc. Natl. Acad. Sci. U.S.A. 89 11711–11715. 10.1073/pnas.89.24.11711 PubMed DOI PMC

Hastings J. W., Sweeney B. M. (1957). On the mechanism of temperature independence in a biological clock. Proc. Natl. Acad. Sci. U.S.A. 43 804–811. 10.1073/pnas.43.9.804 PubMed DOI PMC

Izumo M., Johnson C. H., Yamazaki S. (2003). Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: temperature compensation and damping. Proc. Natl. Acad. Sci. U.S.A. 100 16089–16094. 10.1073/pnas.2536313100 PubMed DOI PMC

Jang A. R., Moravcevic K., Saez L., Young M. W., Sehgal A. (2015). Drosophila TIM binds importin alpha1, and acts as an adapter to transport PER to the nucleus. PLoS Genet. 11:e1004974 10.1371/journal.pgen.1004974 PubMed DOI PMC

Kamae Y., Tomioka K. (2012). timeless is an essential component of the circadian clock in a primitive insect, the firebrat Thermobia domestica. J. Biol. Rhythms 27 126–134. 10.1177/0748730411435997 PubMed DOI

Kaushik R., Nawathean P., Busza A., Murad A., Emery P., Rosbash M. (2007). PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila. PLoS Biol. 5:e0050146 10.1371/journal.pbio.0050146 PubMed DOI PMC

Ko H. W., Kim E. Y., Chiu J., Vanselow J. T., Kramer A., Edery I. (2010). A hierarchical phosphorylation cascade that regulates the timing of PERIOD nuclear entry reveals novel roles for proline-directed kinases and GSK-3 beta/SGG in circadian clocks. J. Neurosci. 30 12664–12675. 10.1523/Jneurosci.1586-10.2010 PubMed DOI PMC

Kobelkova A., Bajgar A., Dolezel D. (2010). Functional molecular analysis of a circadian clock Gene timeless promoter from the drosophilid fly Chymomyza costata. J. Biol. Rhythm 25 399–409. 10.1177/0748730410385283 PubMed DOI

Kobelkova A., Zavodska R., Sauman I., Bazalova O., Dolezel D. (2015). Expression of clock genes period and timeless in the central nervous system of the Mediterranean flour moth, Ephestia kuehniella. J. Biol. Rhythms 30 104–116. 10.1177/0748730414568430 PubMed DOI

Kondo S., Ueda R. (2013). Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195 715–721. 10.1534/genetics.113.156737 PubMed DOI PMC

Konopka R. J., Benzer S. (1971). Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 68 2112–2116. 10.1073/pnas.68.9.2112 PubMed DOI PMC

Konopka R. J., Hamblencoyle M. J., Jamison C. F., Hall J. C. (1994). An ultrashort clock mutation at the period locus of Drosophila melanogaster that reveals some new features of the flys circadian system. J. Biol. Rhythm 9 189–216. 10.1177/074873049400900303 PubMed DOI

Konopka R. J., Pittendrigh C., Orr D. (1989). Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J. Neurogenet. 6 1–10. 10.3109/01677068909107096 PubMed DOI

Kosugi S., Hasebe M., Tomita M., Yanagawa H. (2008). Nuclear export signal consensus sequences defined using a localization-based yeast selection system. Traffic 9 2053–2062. 10.1111/j.1600-0854.2008.00825.x PubMed DOI

Kotwica-Rolinska J., Chodakova L., Chvalova D., Kristofova L., Fenclova I., Provaznik J., et al. (2019). CRISPR/Cas9 genome editing introduction and optimization in the non-model insect Pyrrhocoris apterus. Front. Physiol. 10:891. 10.3389/fphys.2019.00891 PubMed DOI PMC

Kotwica-Rolinska J., Pivarciova L., Vaneckova H., Dolezel D. (2017). The role of circadian clock genes in the photoperiodic timer of the linden bug, Pyrrhocoris apterus, during the nymphal stage. Physiol. Entomol. 42 266–273. 10.1111/phen.12197 PubMed DOI

Landskron J., Chen K. F., Wolf E., Stanewsky R. (2009). A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock. PLoS Biol. 7:e1000003. 10.1371/journal.pbio.1000003 PubMed DOI PMC

Levine J. D., Funes P., Dowse H. B., Hall J. C. (2002). Signal analysis of behavioral and molecular cycles. BMC Neurosci. 3:1. 10.1186/1471-2202-3-1 PubMed DOI PMC

Li Y. H., Liu X., Vanselow J. T., Zheng H., Schlosser A., Chiu J. C. (2019). O-GlcNAcylation of PERIOD regulates its interaction with CLOCK and timing of circadian transcriptional repression. PLoS Genet. 15:e1007953. 10.1371/journal.pgen.1007953 PubMed DOI PMC

Majercak J., Sidote D., Hardin P. E., Edery I. (1999). How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24 219–230. 10.1016/s0896-6273(00)80834-x PubMed DOI

Martinek S., Inonog S., Manoukian A. S., Young M. W. (2001). A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105 769–779. 10.1016/S0092-8674(01)00383-X PubMed DOI

Matsumoto A., Tomioka K., Chiba Y., Tanimura T. (1999). timrit lengthens circadian period in a temperature-dependent manner through suppression of PERIOD protein cycling and nuclear localization. Mol. Cell. Biol. 19 4343–4354. 10.1128/mcb.19.6.4343 PubMed DOI PMC

Meyer P., Saez L., Young M. W. (2006). PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock. Science 311 226–229. 10.1126/science.1118126 PubMed DOI

Montelli S., Mazzotta G., Vanin S., Caccin L., Corra S., De Pitta C., et al. (2015). period and timeless mRNA splicing profiles under natural conditions in Drosophila melanogaster. J. Biol. Rhythms 30 217–227. 10.1177/0748730415583575 PubMed DOI

Nakajima M., Imai K., Ito H., Nishiwaki T., Murayama Y., Iwasaki H., et al. (2005). Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308 414–415. 10.1126/science.1108451 PubMed DOI

Nawathean P., Rosbash M. (2004). The doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity. Mol. Cell. 13 213–223. 10.1016/S1097-2765(03)00503-3 PubMed DOI

Ozkaya O., Rosato E. (2012). The circadian clock of the fly: a neurogenetics journey through time. Adv. Genet. 77 79–123. 10.1016/B978-0-12-387687-4.00004-0 PubMed DOI

Pittendrigh C. S. (1954). On temperature independence in the clock system controlling emergence time in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 40 1018–1029. 10.1073/pnas.40.10.1018 PubMed DOI PMC

Pivarciova L., Vaneckova H., Provaznik J., Wu B. C., Pivarci M., Peckova O., et al. (2016). Unexpected geographic variability of the free running period in the linden bug, Pyrrhocoris apterus. J. Biol. Rhythms 31 568–576. 10.1177/0748730416671213 PubMed DOI

Port F., Chen H. M., Lee T., Bullock S. L. (2014). Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 111 E2967–E2976. 10.1073/pnas.1405500111 PubMed DOI PMC

Poupardin R., Schottner K., Korbelova J., Provaznik J., Dolezel D., Pavlinic D., et al. (2015). Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genomics 16:720. 10.1186/s12864-015-1907-4 PubMed DOI PMC

Price J. L. (2005). Genetic screens for clock mutants in Drosophila. Method Enzymol. 393 35–60. 10.1016/S0076-6879(05)93003-6 PubMed DOI

Price J. L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M. W. (1998). Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94 83–95. 10.1016/s0092-8674(00)81224-6 PubMed DOI

Ren X., Yang Z., Xu J., Sun J., Mao D., Hu Y., et al. (2014). Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep. 9 1151–1162. 10.1016/j.celrep.2014.09.044 PubMed DOI PMC

Rothenfluh A., Abodeely M., Price J. L., Young M. W. (2000a). Isolation and analysis of six timeless alleles that cause short- or long-period circadian rhythms in Drosophila. Genetics 156 665–675. PubMed PMC

Rothenfluh A., Young M. W., Saez L. (2000b). A TIMELESS-independent function for PERIOD proteins in the Drosophila clock. Neuron 26 505–514. 10.1016/S0896-6273(00)81182-4 PubMed DOI

Ruoff P. (1992). Introducing temperature compensation in any reaction kinetic oscillator model. J. Interdiscipl. Cycle 23 92–99.

Rutila J. E., Zeng H., Le M., Curtin K. D., Hall J. C., Rosbash M. (1996). The timSL mutant of the Drosophila rhythm gene timeless manifests allele-specific interactions with period gene mutants. Neuron 17 921–929. 10.1016/s0896-6273(00)80223-8 PubMed DOI

Saez L., Derasmo M., Meyer P., Stieglitz J., Young M. W. (2011). A key temporal delay in the circadian cycle of Drosophila is mediated by a nuclear localization signal in the timeless protein. Genetics 188 591–U166. 10.1534/genetics.111.127225 PubMed DOI PMC

Saez L., Young M. W. (1996). Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron 17 911–920. 10.1016/S0896-6273(00)80222-6 PubMed DOI

Sathyanarayanan S., Zheng X., Xiao R., Sehgal A. (2004). Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116 603–615. 10.1016/s0092-8674(04)00128-x PubMed DOI

Schmid B., Helfrich-Forster C., Yoshii T. (2011). A new ImageJ plug-in “ActogramJ” for chronobiological analyses. J. Biol. Rhythms 26 464–467. 10.1177/0748730411414264 PubMed DOI

Sehadova H., Glaser F. T., Gentile C., Simoni A., Giesecke A., Albert J. T., et al. (2009). Temperature entrainment of Drosophila’s circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron 64 251–266. 10.1016/j.neuron.2009.08.026 PubMed DOI

Sehgal A., Price J. L., Man B., Young M. W. (1994). Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263 1603–1606. 10.1126/science.8128246 PubMed DOI

Shafer O. T., Rosbash M., Truman J. W. (2002). Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J. Neurosci. 22 5946–5954. PubMed PMC

Shinohara Y., Koyama Y. M., Ukai-Tadenuma M., Hirokawa T., Kikuchi M., Yamada R. G., et al. (2017). Temperature-sensitive substrate and product binding underlie temperature-compensated phosphorylation in the clock. Mol. Cell. 67 783–798. 10.1016/j.molcel.2017.08.009 PubMed DOI

Siwicki K. K., Eastman C., Petersen G., Rosbash M., Hall J. C. (1988). Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1 141–150. 10.1016/0896-6273(88)90198-5 PubMed DOI

Stanewsky R., Frisch B., Brandes C., HamblenCoyle M. J., Rosbash M., Hall J. C. (1997). Temporal and spatial expression patterns of transgenes containing increasing amounts of the Drosophila clock gene period and a lacZ reporter: mapping elements of the PER protein involved in circadian cycling. J. Neurosci. 17 676–696. PubMed PMC

Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S. A., et al. (1998). The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95 681–692. 10.1016/S0092-8674(00)81638-4 PubMed DOI

Tataroglu O., Emery P. (2015). The molecular ticks of the Drosophila circadian clock. Curr. Opin. Insect. Sci. 7 51–57. 10.1016/j.cois.2015.01.002 PubMed DOI PMC

Tauber E., Zordan M., Sandrelli F., Pegoraro M., Osterwalder N., Breda C., et al. (2007). Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316 1895–1898. 10.1126/science.1138412 PubMed DOI

Tomioka K., Matsumoto A. (2015). Circadian molecular clockworks in non-model insects. Curr. Opin. Insect. Sci. 7 58–64. 10.1016/j.cois.2014.12.006 PubMed DOI

Urbanova V., Bazalova O., Vaneckova H., Dolezel D. (2016). Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 70 184–190. 10.1016/j.ibmb.2016.01.003 PubMed DOI

Wülbeck C., Szabo G., Shafer O. T., Helfrich-Forster C., Stanewsky R. (2005). The novel Drosophila tim(blind) mutation affects behavioral rhythms but not periodic eclosion. Genetics 169 751–766. 10.1534/genetics.104.036244 PubMed DOI PMC

Zhang Z., Cao W., Edery I. (2018). The SR protein B52/SRp55 regulates splicing of the period thermosensitive intron and mid-day siesta in Drosophila. Sci. Rep. 8:1872. 10.1038/s41598-017-18167-3 PubMed DOI PMC

Zhou M., Kim J. K., Eng G. W., Forger D. B., Virshup D. M. (2015). A Period2 phosphoswitch regulates and temperature compensates circadian period. Mol. Cell. 60 77–88. 10.1016/j.molcel.2015.08.022 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...