New Drosophila Circadian Clock Mutants Affecting Temperature Compensation Induced by Targeted Mutagenesis of Timeless
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31849700
PubMed Central
PMC6901700
DOI
10.3389/fphys.2019.01442
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR-CAS9, Drosophila melanogaster, candidate genes, circadian clock, reverse genetics, screening, temperature compensation,
- Publikační typ
- časopisecké články MeSH
Drosophila melanogaster has served as an excellent genetic model to decipher the molecular basis of the circadian clock. Two key proteins, PERIOD (PER) and TIMELESS (TIM), are particularly well explored and a number of various arrhythmic, slow, and fast clock mutants have been identified in classical genetic screens. Interestingly, the free running period (tau, τ) is influenced by temperature in some of these mutants, whereas τ is temperature-independent in other mutant lines as in wild-type flies. This, so-called "temperature compensation" ability is compromised in the mutant timeless allele "ritsu" (tim rit ), and, as we show here, also in the tim blind allele, mapping to the same region of TIM. To test if this region of TIM is indeed important for temperature compensation, we generated a collection of new mutants and mapped functional protein domains involved in the regulation of τ and in general clock function. We developed a protocol for targeted mutagenesis of specific gene regions utilizing the CRISPR/Cas9 technology, followed by behavioral screening. In this pilot study, we identified 20 new timeless mutant alleles with various impairments of temperature compensation. Molecular characterization revealed that the mutations included short in-frame insertions, deletions, or substitutions of a few amino acids resulting from the non-homologous end joining repair process. Our protocol is a fast and cost-efficient systematic approach for functional analysis of protein-coding genes and promoter analysis in vivo. Interestingly, several mutations with a strong temperature compensation defect map to one specific region of TIM. Although the exact mechanism of how these mutations affect TIM function is as yet unknown, our in silico analysis suggests they affect a putative nuclear export signal (NES) and phosphorylation sites of TIM. Immunostaining for PER was performed on two TIM mutants that display longer τ at 25°C and complete arrhythmicity at 28°C. Consistently with the behavioral phenotype, PER immunoreactivity was reduced in circadian clock neurons of flies exposed to elevated temperatures.
Department of Biology University of Padua Padua Italy
Faculty of Science University of South Bohemia in České Budějovice České Budějovice Czechia
Institute of Neuro and Behavioral Biology Westfälische Wilhelms University Münster Germany
Zobrazit více v PubMed
Agrawal P., Hardin P. E. (2016). An RNAi screen to identify protein phosphatases that function within the Drosophila circadian clock. PubMed DOI PMC
Arrhenius S. (1889). Über die reaktionsgeschwindigkeit bei der inversion von Rohrzucker durch Saeuren.
Ashmore L. J., Sathyanarayanan S., Silvestre D. W., Emerson M. M., Schotland P., Sehgal A. (2003). Novel insights into the regulation of the timeless protein. PubMed DOI PMC
Baylies M. K., Vosshall L. B., Sehgal A., Young M. W. (1992). New short period mutations of the Drosophila clock gene per. PubMed DOI
Bazalova O., Dolezel D. (2017). Daily activity of the housefly, musca domestica, is influenced by temperature independent of 3′ UTR period gene splicing. PubMed DOI PMC
Bazalova O., Kvicalova M., Valkova T., Slaby P., Bartos P., Netusil R., et al. (2016). Cryptochrome 2 mediates directional magnetoreception in cockroaches. PubMed DOI PMC
Boothroyd C. E., Wijnen H., Naef F., Saez L., Young M. W. (2007). Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PubMed DOI PMC
Busza A., Emery-Le M., Rosbash M., Emery P. (2004). Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. PubMed DOI
Ceriani M. F., Darlington T. K., Staknis D., Mas P., Petti A. A., Weitz C. J., et al. (1999). Light-dependent sequestration of TIMELESS by CRYPTOCHROME. PubMed DOI
Chiu J. C., Ko H. W., Edery I. (2011). NEMO/NLK Phosphorylates PERIOD to initiate a time delay phosphorylation circuit that sets circadian clock speed. PubMed DOI PMC
Curtiz M., Wallis B. H. (1942).
Darlington T. K., Wager-Smith K., Ceriani M. F., Staknis D., Gekakis N., Steeves T. D. L., et al. (1998). Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. PubMed DOI
Diernfellner A., Colot H. V., Dintsis O., Loros J. J., Dunlap J. C., Brunner M. (2007). Long and short isoforms of PubMed DOI PMC
Dolezelova E., Dolezel D., Hall J. C. (2007). Rhythm defects caused by newly engineered null mutations in Drosophila’s cryptochrome gene. PubMed DOI PMC
Edery I., Zwiebel L. J., Dembinska M. E., Rosbash M. (1994). Temporal phosphorylation of the Drosophila period protein. PubMed DOI PMC
Fang Y., Sathyanarayanan S., Sehgal A. (2007). Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1). PubMed DOI PMC
Fexová S. (2010).
Fung H. Y., Fu S. C., Brautigam C. A., Chook Y. M. (2015). Structural determinants of nuclear export signal orientation in binding to exportin CRM1. PubMed DOI PMC
Glaser F. T., Stanewsky R. (2005). Temperature synchronization of the Drosophila circadian clock. PubMed DOI
Glossop N. R., Lyons L. C., Hardin P. E. (1999). Interlocked feedback loops within the Drosophila circadian oscillator. PubMed DOI
Hamblen M. J., White N. E., Emery P., Kaiser K., Hall J. C. (1998). Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types. PubMed PMC
Hara T., Koh K., Combs D. J., Sehgal A. (2011). Post-translational regulation and nuclear entry of TIMELESS and PERIOD are affected in new timeless mutant. PubMed DOI PMC
Hardin P. E. (2011). Molecular genetic analysis of circadian timekeeping in Drosophila. PubMed DOI PMC
Hardin P. E., Hall J. C., Rosbash M. (1990). Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. PubMed DOI
Hardin P. E., Hall J. C., Rosbash M. (1992). Circadian oscillations in period gene messenger-RNA levels are transcriptionally regulated. PubMed DOI PMC
Hastings J. W., Sweeney B. M. (1957). On the mechanism of temperature independence in a biological clock. PubMed DOI PMC
Izumo M., Johnson C. H., Yamazaki S. (2003). Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: temperature compensation and damping. PubMed DOI PMC
Jang A. R., Moravcevic K., Saez L., Young M. W., Sehgal A. (2015). Drosophila TIM binds importin alpha1, and acts as an adapter to transport PER to the nucleus. PubMed DOI PMC
Kamae Y., Tomioka K. (2012). timeless is an essential component of the circadian clock in a primitive insect, the firebrat Thermobia domestica. PubMed DOI
Kaushik R., Nawathean P., Busza A., Murad A., Emery P., Rosbash M. (2007). PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila. PubMed DOI PMC
Ko H. W., Kim E. Y., Chiu J., Vanselow J. T., Kramer A., Edery I. (2010). A hierarchical phosphorylation cascade that regulates the timing of PERIOD nuclear entry reveals novel roles for proline-directed kinases and GSK-3 beta/SGG in circadian clocks. PubMed DOI PMC
Kobelkova A., Bajgar A., Dolezel D. (2010). Functional molecular analysis of a circadian clock Gene timeless promoter from the drosophilid fly PubMed DOI
Kobelkova A., Zavodska R., Sauman I., Bazalova O., Dolezel D. (2015). Expression of clock genes period and timeless in the central nervous system of the Mediterranean flour moth, PubMed DOI
Kondo S., Ueda R. (2013). Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. PubMed DOI PMC
Konopka R. J., Benzer S. (1971). Clock mutants of Drosophila melanogaster. PubMed DOI PMC
Konopka R. J., Hamblencoyle M. J., Jamison C. F., Hall J. C. (1994). An ultrashort clock mutation at the period locus of Drosophila melanogaster that reveals some new features of the flys circadian system. PubMed DOI
Konopka R. J., Pittendrigh C., Orr D. (1989). Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. PubMed DOI
Kosugi S., Hasebe M., Tomita M., Yanagawa H. (2008). Nuclear export signal consensus sequences defined using a localization-based yeast selection system. PubMed DOI
Kotwica-Rolinska J., Chodakova L., Chvalova D., Kristofova L., Fenclova I., Provaznik J., et al. (2019). CRISPR/Cas9 genome editing introduction and optimization in the non-model insect PubMed DOI PMC
Kotwica-Rolinska J., Pivarciova L., Vaneckova H., Dolezel D. (2017). The role of circadian clock genes in the photoperiodic timer of the linden bug, DOI
Landskron J., Chen K. F., Wolf E., Stanewsky R. (2009). A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock. PubMed DOI PMC
Levine J. D., Funes P., Dowse H. B., Hall J. C. (2002). Signal analysis of behavioral and molecular cycles. PubMed DOI PMC
Li Y. H., Liu X., Vanselow J. T., Zheng H., Schlosser A., Chiu J. C. (2019). O-GlcNAcylation of PERIOD regulates its interaction with CLOCK and timing of circadian transcriptional repression. PubMed DOI PMC
Majercak J., Sidote D., Hardin P. E., Edery I. (1999). How a circadian clock adapts to seasonal decreases in temperature and day length. PubMed DOI
Martinek S., Inonog S., Manoukian A. S., Young M. W. (2001). A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. PubMed DOI
Matsumoto A., Tomioka K., Chiba Y., Tanimura T. (1999). timrit lengthens circadian period in a temperature-dependent manner through suppression of PERIOD protein cycling and nuclear localization. PubMed DOI PMC
Meyer P., Saez L., Young M. W. (2006). PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock. PubMed DOI
Montelli S., Mazzotta G., Vanin S., Caccin L., Corra S., De Pitta C., et al. (2015). period and timeless mRNA splicing profiles under natural conditions in Drosophila melanogaster. PubMed DOI
Nakajima M., Imai K., Ito H., Nishiwaki T., Murayama Y., Iwasaki H., et al. (2005). Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. PubMed DOI
Nawathean P., Rosbash M. (2004). The doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity. PubMed DOI
Ozkaya O., Rosato E. (2012). The circadian clock of the fly: a neurogenetics journey through time. PubMed DOI
Pittendrigh C. S. (1954). On temperature independence in the clock system controlling emergence time in Drosophila. PubMed DOI PMC
Pivarciova L., Vaneckova H., Provaznik J., Wu B. C., Pivarci M., Peckova O., et al. (2016). Unexpected geographic variability of the free running period in the linden bug, PubMed DOI
Port F., Chen H. M., Lee T., Bullock S. L. (2014). Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. PubMed DOI PMC
Poupardin R., Schottner K., Korbelova J., Provaznik J., Dolezel D., Pavlinic D., et al. (2015). Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, PubMed DOI PMC
Price J. L. (2005). Genetic screens for clock mutants in Drosophila. PubMed DOI
Price J. L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M. W. (1998). Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. PubMed DOI
Ren X., Yang Z., Xu J., Sun J., Mao D., Hu Y., et al. (2014). Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. PubMed DOI PMC
Rothenfluh A., Abodeely M., Price J. L., Young M. W. (2000a). Isolation and analysis of six timeless alleles that cause short- or long-period circadian rhythms in Drosophila. PubMed PMC
Rothenfluh A., Young M. W., Saez L. (2000b). A TIMELESS-independent function for PERIOD proteins in the Drosophila clock. PubMed DOI
Ruoff P. (1992). Introducing temperature compensation in any reaction kinetic oscillator model.
Rutila J. E., Zeng H., Le M., Curtin K. D., Hall J. C., Rosbash M. (1996). The timSL mutant of the Drosophila rhythm gene timeless manifests allele-specific interactions with period gene mutants. PubMed DOI
Saez L., Derasmo M., Meyer P., Stieglitz J., Young M. W. (2011). A key temporal delay in the circadian cycle of Drosophila is mediated by a nuclear localization signal in the timeless protein. PubMed DOI PMC
Saez L., Young M. W. (1996). Regulation of nuclear entry of the Drosophila clock proteins period and timeless. PubMed DOI
Sathyanarayanan S., Zheng X., Xiao R., Sehgal A. (2004). Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. PubMed DOI
Schmid B., Helfrich-Forster C., Yoshii T. (2011). A new ImageJ plug-in “ActogramJ” for chronobiological analyses. PubMed DOI
Sehadova H., Glaser F. T., Gentile C., Simoni A., Giesecke A., Albert J. T., et al. (2009). Temperature entrainment of Drosophila’s circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. PubMed DOI
Sehgal A., Price J. L., Man B., Young M. W. (1994). Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. PubMed DOI
Shafer O. T., Rosbash M., Truman J. W. (2002). Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. PubMed PMC
Shinohara Y., Koyama Y. M., Ukai-Tadenuma M., Hirokawa T., Kikuchi M., Yamada R. G., et al. (2017). Temperature-sensitive substrate and product binding underlie temperature-compensated phosphorylation in the clock. PubMed DOI
Siwicki K. K., Eastman C., Petersen G., Rosbash M., Hall J. C. (1988). Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. PubMed DOI
Stanewsky R., Frisch B., Brandes C., HamblenCoyle M. J., Rosbash M., Hall J. C. (1997). Temporal and spatial expression patterns of transgenes containing increasing amounts of the Drosophila clock gene period and a lacZ reporter: mapping elements of the PER protein involved in circadian cycling. PubMed PMC
Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S. A., et al. (1998). The cry(b) mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. PubMed DOI
Tataroglu O., Emery P. (2015). The molecular ticks of the Drosophila circadian clock. PubMed DOI PMC
Tauber E., Zordan M., Sandrelli F., Pegoraro M., Osterwalder N., Breda C., et al. (2007). Natural selection favors a newly derived timeless allele in Drosophila melanogaster. PubMed DOI
Tomioka K., Matsumoto A. (2015). Circadian molecular clockworks in non-model insects. PubMed DOI
Urbanova V., Bazalova O., Vaneckova H., Dolezel D. (2016). Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, PubMed DOI
Wülbeck C., Szabo G., Shafer O. T., Helfrich-Forster C., Stanewsky R. (2005). The novel Drosophila tim(blind) mutation affects behavioral rhythms but not periodic eclosion. PubMed DOI PMC
Zhang Z., Cao W., Edery I. (2018). The SR protein B52/SRp55 regulates splicing of the period thermosensitive intron and mid-day siesta in Drosophila. PubMed DOI PMC
Zhou M., Kim J. K., Eng G. W., Forger D. B., Virshup D. M. (2015). A Period2 phosphoswitch regulates and temperature compensates circadian period. PubMed DOI