The interplay between peptides and RNA is critical for protoribosome compartmentalization and stability
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Charles University
TOYOBO Biotechnology Foundation
RGEC27/2023];
Human Frontier Science Program
[4EU+/22/F4/25
Univerzita Karlova v Praze
AB301003,
NINS
LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund
21J12128
JSPS
PubMed
39340303
PubMed Central
PMC11551759
DOI
10.1093/nar/gkae823
PII: 7786163
Knihovny.cz E-zdroje
- MeSH
- konformace nukleové kyseliny MeSH
- molekulární modely MeSH
- peptidy chemie metabolismus MeSH
- peptidyltransferasy metabolismus chemie MeSH
- ribozomální proteiny * metabolismus chemie MeSH
- ribozomy * metabolismus MeSH
- RNA metabolismus chemie MeSH
- stabilita RNA MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peptidy MeSH
- peptidyltransferasy MeSH
- ribozomální proteiny * MeSH
- RNA MeSH
The ribosome, owing to its exceptional conservation, harbours a remarkable molecular fossil known as the protoribosome. It surrounds the peptidyl transferase center (PTC), responsible for peptide bond formation. While previous studies have demonstrated the PTC activity in RNA alone, our investigation reveals the intricate roles of the ribosomal protein fragments (rPeptides) within the ribosomal core. This research highlights the significance of rPeptides in stability and coacervation of two distinct protoribosomal evolutionary stages. The 617nt 'big' protoribosome model, which associates with rPeptides specifically, exhibits a structurally defined and rigid nature, further stabilized by the peptides. In contrast, the 136nt 'small' model, previously linked to peptidyltransferase activity, displays greater structural flexibility. While this construct interacts with rPeptides with lower specificity, they induce coacervation of the 'small' protoribosome across a wide concentration range, which is concomitantly dependent on the RNA sequence and structure. Moreover, these conditions protect RNA from degradation. This phenomenon suggests a significant evolutionary advantage in the RNA-protein interaction at the early stages of ribosome evolution. The distinct properties of the two protoribosomal stages suggest that rPeptides initially provided compartmentalization and prevented RNA degradation, preceding the emergence of specific RNA-protein interactions crucial for the ribosomal structural integrity.
Zobrazit více v PubMed
Bowman J.C., Petrov A.S., Frenkel-Pinter M., Penev P.I., Williams L.D.. Root of the tree: the significance, evolution, and origins of the ribosome. Chem. Rev. 2020; 120:4848–4878. PubMed
Petrov A.S., Gulen B., Norris A.M., Kovacs N.A., Bernier C.R., Lanier K.A., Fox G.E., Harvey S.C., Wartell R.M., Hud N.V.et al. .. History of the ribosome and the origin of translation. Proc. Natl Acad. Sci. USA. 2015; 112:15396–15401. PubMed PMC
Davidovich C., Belousoff M., Bashan A., Yonath A.. The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res. Microbiol. 2009; 160:487–492. PubMed
Lupas A.N., Alva V.. Ribosomal proteins as documents of the transition from unstructured (poly)peptides to folded proteins. J. Struct. Biol. 2017; 198:74–81. PubMed
Hsiao C., Mohan S., Kalahar B.K., Williams L.D.. Peeling the onion: ribosomes are ancient molecular fossils. Mol. Biol. Evol. 2009; 26:2415–2425. PubMed
Hury J., Nagaswamy U., Larios-Sanz M., Fox G.E.. Ribosome origins: the relative age of 23S rRNA Domains. Orig. Life Evol. Biosph. 2006; 36:421–429. PubMed
Bokov K., Steinberg S.V.. A hierarchical model for evolution of 23S ribosomal RNA. Nature. 2009; 457:977–980. PubMed
Noller H.F. Evolution of protein synthesis from an RNA world. Cold Spring Harb. Perspect. Biol. 2012; 4:a003681. PubMed PMC
Hsiao C., Lenz T.K., Peters J.K., Fang P.-Y., Schneider D.M., Anderson E.J., Preeprem T., Bowman J.C., O’Neill E.B., Lie L.et al. .. Molecular paleontology: a biochemical model of the ancestral ribosome. Nucleic Acids Res. 2013; 41:3373–3385. PubMed PMC
Bose T., Fridkin G., Bashan A., Yonath A.. Origin of life: chiral short RNA chains capable of non-enzymatic peptide bond formation. Isr. J. Chem. 2021; 61:863–872.
Bose T., Fridkin G., Davidovich C., Krupkin M., Dinger N., Falkovich A.H., Peleg Y., Agmon I., Bashan A., Yonath A.. Origin of life: protoribosome forms peptide bonds and links RNA and protein dominated worlds. Nucleic Acids Res. 2022; 50:1815–1828. PubMed PMC
Kawabata M., Kawashima K., Mutsuro-Aoki H., Ando T., Umehara T., Tamura K.. Peptide bond formation between aminoacyl-minihelices by a scaffold derived from the peptidyl transferase center. Life (Basel). 2022; 12:573. PubMed PMC
Fried S.D., Fujishima K., Makarov M., Cherepashuk I., Hlouchova K.. Peptides before and during the nucleotide world: an origins story emphasizing cooperation between proteins and nucleic acids. J. R. Soc. Interface. 2022; 19:20210641. PubMed PMC
Tagami S., Attwater J., Holliger P.. Simple peptides derived from the ribosomal core potentiate RNA polymerase ribozyme function. Nat. Chem. 2017; 9:325–332. PubMed PMC
Oparin A.I. The Origin of Life on the Earth. (Pergamon, Oxford). 1959;
Ghosh B., Bose R., Tang T.-Y.D.. Can coacervation unify disparate hypotheses in the origin of cellular life?. Curr. Opin. Colloid Interface Sci. 2021; 52:101415.
Zearfoss N.R., Ryder S.P.. End-labeling oligonucleotides with chemical tags after synthesis. Methods Mol. Biol. 2012; 941:181–193. PubMed PMC
Selmer M., Dunham C.M., Murphy F.V., Weixlbaumer A., Petry S., Kelley A.C., Weir J.R., Ramakrishnan V.. Structure of the 70S ribosome complexed with mRNA and tRNA. Science. 2006; 313:1935–1942. PubMed
Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A.. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995; 117:5179–5197.
Zgarbová M., Otyepka M., Šponer J., Lankaš F., Jurečka P.. Base pair fraying in molecular dynamics simulations of DNA and RNA. J. Chem. Theory Comput. 2014; 10:3177–3189. PubMed
Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C.. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015; 11:3696–3713. PubMed PMC
Joung I.S., Cheatham T.E.. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008; 112:9020–9041. PubMed PMC
Berendsen H.J.C., Grigera J.R., Straatsma T.P.. The missing term in effective pair potentials. J. Phys. Chem. 1987; 91:6269–6271.
Bussi G., Donadio D., Parrinello M.. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007; 126:014101. PubMed
Parrinello M. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981; 52:7182.
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E.. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1–2:19–25.
Kovacs N.A., Petrov A.S., Lanier K.A., Williams L.D.. Frozen in time: the history of proteins. Mol. Biol. Evol. 2017; 34:1252–1260. PubMed PMC
Poudyal R.R., Pir Cakmak F., Keating C.D., Bevilacqua P.C.. Physical principles and extant biology reveal roles for RNA-containing membraneless compartments in origins of life chemistry. Biochemistry. 2018; 57:2509–2519. PubMed PMC
Shakya A., King J.T.. DNA local-flexibility-dependent assembly of phase-separated liquid droplets. Biophys. J. 2018; 115:1840–1847. PubMed PMC
Fraccia T.P., Zanchetta G.. Liquid–liquid crystalline phase separation in biomolecular solutions. Curr. Opin. Colloid Interface Sci. 2021; 56:101500.
Lu T., Nakashima K.K., Spruijt E.. Temperature-responsive peptide-nucleotide coacervates. J. Phys. Chem. B. 2021; 125:3080–3091. PubMed PMC
Preiner M., Asche S., Becker S., Betts H.C., Boniface A., Camprubi E., Chandru K., Erastova V., Garg S.G., Khawaja N.et al. .. The future of origin of life research: bridging decades-old divisions. Life (Basel). 2020; 10:20. PubMed PMC
Krishnamurthy R. Systems chemistry in the chemical origins of life: the 18th Camel Paradigm. J Syst Chem. 2020; 8:40.
Frenkel-Pinter M., Bouza M., Fernández F.M., Leman L.J., Williams L.D., Hud N.V., Guzman-Martinez A.. Thioesters provide a plausible prebiotic path to proto-peptides. Nat. Commun. 2022; 13:2569. PubMed PMC
Makarov M., Sanchez Rocha A.C., Krystufek R., Cherepashuk I., Dzmitruk V., Charnavets T., Faustino A.M., Lebl M., Fujishima K., Fried S.D.et al. .. Early selection of the amino acid alphabet was adaptively shaped by biophysical constraints of foldability. J. Am. Chem. Soc. 2023; 145:5320–5329. PubMed PMC
Chandru K., Jia T.Z., Mamajanov I., Bapat N., Cleaves H.J.. Prebiotic oligomerization and self-assembly of structurally diverse xenobiological monomers. Sci. Rep. 2020; 10:17560. PubMed PMC
Müller F., Escobar L., Xu F., Węgrzyn E., Nainytė M., Amatov T., Chan C.-Y., Pichler A., Carell T.. A prebiotically plausible scenario of an RNA-peptide world. Nature. 2022; 605:279–284. PubMed PMC
Toparlak Ö.D., Karki M., Egas Ortuno V., Krishnamurthy R., Mansy S.S.. Cyclophospholipids increase protocellular stability to metal ions. Small. 2020; 16:e1903381. PubMed
Rout S.K., Friedmann M.P., Riek R., Greenwald J.. A prebiotic template-directed peptide synthesis based on amyloids. Nat. Commun. 2018; 9:234. PubMed PMC
Forsythe J.G., Yu S.-S., Mamajanov I., Grover M.A., Krishnamurthy R., Fernández F.M., Hud N.V.. Ester-mediated amide bond formation driven by wet-dry cycles: a possible path to polypeptides on the prebiotic earth. Angew. Chem. Int. Ed. 2015; 54:9871–9875. PubMed PMC
Higgs P.G., Pudritz R.E.. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology. 2009; 9:483–490. PubMed
Cleaves H.J. The origin of the biologically coded amino acids. J. Theor. Biol. 2010; 263:490–498. PubMed
Zaia D.A.M., Zaia C.T.B.V., De Santana H. Which amino acids should be used in prebiotic chemistry studies?. Orig. Life Evol. Biosph. 2008; 38:469–488. PubMed
Rivas M., Fox G.E.. Further characterization of the pseudo-symmetrical ribosomal region. Life (Basel). 2020; 10:201. PubMed PMC
Spruijt E. Open questions on liquid-liquid phase separation. Commun. Chem. 2023; 6:23. PubMed PMC
Cannelli S.M.C., Gupta R., Nguyen T., Poddar A., Sharma S., Vithole P.V., Jia T.Z.. A compositional view comparing modern biological condensates and primitive phase-separated compartments. Pept. Sci. 2023; 115:e24331.
Poudyal R.R., Guth-Metzler R.M., Veenis A.J., Frankel E.A., Keating C.D., Bevilacqua P.C.. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat. Commun. 2019; 10:490. PubMed PMC
Le Vay K., Song E.Y., Ghosh B., Tang T.-Y.D., Mutschler H.. Enhanced ribozyme-catalyzed recombination and oligonucleotide assembly in peptide-RNA condensates. Angew. Chem. Int. Ed. 2021; 60:26096–26104. PubMed PMC