The Future of Origin of Life Research: Bridging Decades-Old Divisions

. 2020 Feb 26 ; 10 (3) : . [epub] 20200226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32110893

Grantová podpora
MA-1426/21-1 Deutsche Forschungsgemeinschaft
666053 European Research Council - International
93046 Volkswagen Foundation
C.Z. 02.2.69/0.0/0.0/16_027/0008351 European Structural and Investment Funds Operational Programme
GGP-2019-029 Research Encouragement Fund UKM
803768 European Research Council - International
VRG15-007 Vienna Science and Technology Fund
GINOP 2.3.2-15-2016-00057 National Research, Development and Innovation Office
724908 European Research Council - International

Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.

Archaea Biology and Ecogenomics Division University of Vienna 1090 Vienna Austria

Cellular and Molecular Biophysics Max Planck Institute of Biochemistry 82152 Martinsried Germany

Cluster of Excellence on Plant Sciences University of Cologne 50674 Cologne Germany

Department of Cellular Computational and Integrative Biology University of Trento 38123 Trento Italy

Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK

Department of Physical Chemistry University of Chemistry and Technology Prague Technicka 5 16628 Prague 6 Dejvice Czech Republic

Department of Plant Systematics Ecology and Theoretical Biology Eötvös Loránd University Pázmány Péter sétány 1 C 1117 Budapest Hungary

Environmental Microbial Genomics Laboratoire Ampère Ecole Centrale de Lyon Université de Lyon 69130 Ecully France

Institut für Geologische Wissenschaften Freie Universität Berlin 12249 Berlin Germany

Institute of Evolution MTA Centre for Ecological Research Klebelsberg Kuno u 3 H 8237 Tihany Hungary

Institute of Molecular Evolution University of Düsseldorf 40225 Düsseldorf Germany

Institute of Synthetic Microbiology University of Düsseldorf 40225 Düsseldorf Germany

Lycée Colbert BP 50620 59208 Tourcoing Cedex France

Origins Center Department of Earth Sciences Utrecht University 3584 CB Utrecht The Netherlands

Quantitative and Theoretical Biology University of Düsseldorf 40225 Düsseldorf Germany

School of Biological and Chemical Sciences Queen Mary University of London London E1 4DQ UK

School of Chemistry University of Glasgow Glasgow G128QQ UK

School of Earth Sciences University of Bristol Bristol BS8 1RL UK

Space Science Center Institute of Climate Change Level 3 Research Complex National University of Malaysia 43600 UKM Bangi Selangor Malaysia

Systems Biophysics Physics Department Ludwig Maximilians Universität München 80799 Munich Germany

UK Centre for Astrobiology School of Chemistry University of Edinburgh Edinburgh EH9 3FJ UK

Université de Strasbourg CNRS ISIS 8 allée Gaspard Monge 67000 Strasbourg France

Zobrazit více v PubMed

Gayon J., Malaterre C., Morange M., Raulin-Cerceau F., Tirard S. Defining Life: conference proceedings. Origins. Life Evol. Biosph. 2010;40:119–120. doi: 10.1007/s11084-010-9189-y. PubMed DOI

Mariscal C., Barahona A., Aubert-Kato N., Aydinoglu A.U., Bartlett S., Cárdenas M.L., Chandru K., Cleland C., Cocanougher B.T., Comfort N., et al. Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: A Workshop Report. Origins. Life Evol. Biosph. 2019;49:111–145. doi: 10.1007/s11084-019-09580-x. PubMed DOI

Javaux E.J. Challenges in evidencing the earliest traces of life. Nature. 2019;572:451–460. doi: 10.1038/s41586-019-1436-4. PubMed DOI

Betts H.C., Puttick M.N., Clark J.W., Williams T.A., Donoghue P.C.J., Pisani D. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2018;2:1556–1562. doi: 10.1038/s41559-018-0644-x. PubMed DOI PMC

Czárán T., Könnyű B., Szathmáry E. Metabolically Coupled Replicator Systems: Overview of an RNA-world model concept of prebiotic evolution on mineral surfaces. J. Theor. Biol. 2015;381:39–54. doi: 10.1016/j.jtbi.2015.06.002. PubMed DOI

Davies P.C.W., Benner S.A., Cleland C.E., Lineweaver C.H., McKay C.P., Wolfe-Simon F. Signatures of a shadow biosphere. Astrobiology. 2009;9:241–249. doi: 10.1089/ast.2008.0251. PubMed DOI

McLendon C., Opalko F.J., Illangkoon H.I., Benner S.A. Solubility of polyethers in hydrocarbons at low temperatures. A model for potential genetic backbones on warm titans. Astrobiology. 2015;15:200–206. doi: 10.1089/ast.2014.1212. PubMed DOI

Wöhler F. Ueber künstliche Bildung des Harnstoffs. Ann. Phys. Chem. 1828;87:253–256. doi: 10.1002/andp.18280870206. DOI

Butlerow A. Bildung einer zuckerartigen Substanz durch Synthese. Liebigs. Ann Chem. 1861;120:295–298. doi: 10.1002/jlac.18611200308. DOI

Breslow R. On the mechanism of the formose reaction. Tetrahedron Lett. 1959;1:22–26. doi: 10.1016/S0040-4039(01)99487-0. DOI

Miller S.L. A production of amino acids under possible primitive earth conditions. Science. 1953;117:528–529. doi: 10.1126/science.117.3046.528. PubMed DOI

Miller S.L., Urey H.C. Organic compound synthesis on the primitive earth. Science. 1959;130:245–251. doi: 10.1126/science.130.3370.245. PubMed DOI

Hargreaves W.R., Mulvihill S.J., Deamer D.W. Synthesis of phospholipids and membranes in prebiotic conditions. Nature. 1977;266:78–80. doi: 10.1038/266078a0. PubMed DOI

Ruiz-Mirazo K., Briones C., de la Escosura A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 2014;114:285–366. doi: 10.1021/cr2004844. PubMed DOI

Kitadai N., Maruyama S. Origins of building blocks of life: A review. Geosci. Front. 2018;9:1117–1153. doi: 10.1016/j.gsf.2017.07.007. DOI

Attwater J., Raguram A., Morgunov A.S., Gianni E., Holliger P. Ribozyme-catalysed RNA synthesis using triplet building blocks. eLife. 2018;7 doi: 10.7554/eLife.35255. PubMed DOI PMC

Horning D.P., Joyce G.F. Amplification of RNA by an RNA polymerase ribozyme. Proc. Natl. Acad. Sci. USA. 2016;113:9786–9791. doi: 10.1073/pnas.1610103113. PubMed DOI PMC

Rajamani S., Vlassov A., Benner S., Coombs A., Olasagasti F., Deamer D. Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Origins. Life Evol. Biosph. 2008;38:57–74. doi: 10.1007/s11084-007-9113-2. PubMed DOI

Mamajanov I., MacDonald P.J., Ying J., Duncanson D.M., Dowdy G.R., Walker C.A., Engelhart A.E., Fernández F.M., Grover M.A., Hud N.V., et al. Ester Formation and Hydrolysis during Wet–Dry Cycles: Generation of Far-from-Equilibrium Polymers in a Model Prebiotic Reaction. Macromolecules. 2014;47:1334–1343. doi: 10.1021/ma402256d. DOI

Griffith E.C., Vaida V. In situ observation of peptide bond formation at the water-air interface. Proc. Natl. Acad. Sci. USA. 2012;109:15697–15701. doi: 10.1073/pnas.1210029109. PubMed DOI PMC

Rodriguez-Garcia M., Surman A.J., Cooper G.J.T., Suárez-Marina I., Hosni Z., Lee M.P., Cronin L. Formation of oligopeptides in high yield under simple programmable conditions. Nat. Commun. 2015;6:8385. doi: 10.1038/ncomms9385. PubMed DOI PMC

Erastova V., Degiacomi M.T., G Fraser D., Greenwell H.C. Mineral surface chemistry control for origin of prebiotic peptides. Nat. Commun. 2017;8:2033. doi: 10.1038/s41467-017-02248-y. PubMed DOI PMC

Gibson D.G., Benders G.A., Andrews-Pfannkoch C., Denisova E.A., Baden-Tillson H., Zaveri J., Stockwell T.B., Brownley A., Thomas D.W., Algire M.A., et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319:1215–1220. doi: 10.1126/science.1151721. PubMed DOI

Cello J., Paul A.V., Wimmer E. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science. 2002;297:1016–1018. doi: 10.1126/science.1072266. PubMed DOI

Walker S.I., Packard N., Cody G.D. Re-conceptualizing the origins of life. Philos. Trans. A Math. Phys. Eng. Sci. 2017;375 doi: 10.1098/rsta.2016.0337. PubMed DOI PMC

Locey K.J., Lennon J.T. Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA. 2016;113:5970–5975. doi: 10.1073/pnas.1521291113. PubMed DOI PMC

Milo R. What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays. 2013;35:1050–1055. doi: 10.1002/bies.201300066. PubMed DOI PMC

Mayr E. Cause and effect in biology. Science. 1961;134:1501–1506. doi: 10.1126/science.134.3489.1501. PubMed DOI

Fry I. The origins of research into the origins of life. Endeavour. 2006;30:24–28. doi: 10.1016/j.endeavour.2005.12.002. PubMed DOI

Cleland C.E. Pluralism or unity in biology: could microbes hold the secret to life? Biol. Philos. 2013;28:189–204. doi: 10.1007/s10539-013-9361-7. DOI

Mushegian A.R., Koonin E.V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. USA. 1996;93:10268–10273. doi: 10.1073/pnas.93.19.10268. PubMed DOI PMC

Koonin E.V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 2003;1:127–136. doi: 10.1038/nrmicro751. PubMed DOI

Lagesen K., Ussery D.W., Wassenaar T.M. Genome update: the 1000th genome-a cautionary tale. Microbiology. 2010;156:603–608. doi: 10.1099/mic.0.038257-0. PubMed DOI

Sutherland J.D. The Origin of Life--Out of the Blue. Angew. Chem. Int. Ed Engl. 2016;55:104–121. doi: 10.1002/anie.201506585. PubMed DOI

Ralser M. An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life. Biochem. J. 2018;475:2577–2592. doi: 10.1042/BCJ20160866. PubMed DOI PMC

Yarus M. Getting past the RNA world: the initial Darwinian ancestor. Cold Spring Harb. Perspect. Biol. 2011;3 doi: 10.1101/cshperspect.a003590. PubMed DOI PMC

Prosdocimi F., José M.V., Farias S.T. De Be Introduced to the First Universal Common Ancestor (FUCA): The Great-Grandmother of LUCA (Last Universal Common Ancestor) [(accessed on 25 February 2020)];2018 doi: 10.20944/preprints201806.0035.v1. Available online: https://europepmc.org/article/ppr/ppr49297. DOI

Lahav N., Nir S., Elitzur A.C. The emergence of life on Earth. Prog. Biophys. Mol. Biol. 2001;75:75–120. doi: 10.1016/S0079-6107(01)00003-7. PubMed DOI

Ikehara K. Evolutionary Steps in the Emergence of Life Deduced from the Bottom-Up Approach and GADV Hypothesis (Top-Down Approach) Life. 2016;6:6. doi: 10.3390/life6010006. PubMed DOI PMC

Vicens J., Vicens Q. Emergences of supramolecular chemistry: from supramolecular chemistry to supramolecular science. J. Incl. Phenom. Macrocycl. Chem. 2011;71:251–274. doi: 10.1007/s10847-011-0001-z. DOI

Rich A. On the problems of evolution and biochemical information transfer. In: Kash M., Pullman B., editors. Horizons In Biochemistry. Academic Press; New York, NY, USA: 1962. pp. 103–126.

Gilbert W. Origin of life: The RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI

Kruger K., Grabowski P.J., Zaug A.J., Sands J., Gottschling D.E., Cech T.R. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982;31:147–157. doi: 10.1016/0092-8674(82)90414-7. PubMed DOI

Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983;35:849–857. doi: 10.1016/0092-8674(83)90117-4. PubMed DOI

Robertson M.P., Joyce G.F. The origins of the RNA world. Cold Spring Harb. Perspect. Biol. 2012;4 doi: 10.1101/cshperspect.a003608. PubMed DOI PMC

Orgel L.E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 2004;39:99–123. PubMed

Shapiro R. A Replicator Was Not Involved in the Origin of Life. IUBMB: Life. 2000;49:173–176. doi: 10.1080/713803621. PubMed DOI

Oivanen M., Kuusela S., Lönnberg H. Kinetics and Mechanisms for the Cleavage and Isomerization of the Phosphodiester Bonds of RNA by Brønsted Acids and Bases. Chem. Rev. 1998;98:961–990. doi: 10.1021/cr960425x. PubMed DOI

Wächtershäuser G. The origin of life and its methodological challenge. J. Theor. Biol. 1997;187:483–494. doi: 10.1006/jtbi.1996.0383. PubMed DOI

Dyson F. Origins of Life. Cambridge University Press; Cambridge, UK: 1999.

De Duve C. A Research Proposal on the Origin Of Life. Closing Lecture given at the ISSOL Congress in Oaxaca, Mexico, on July 4, 2002. Origins Life Evol. B. 2003;33:559–574. doi: 10.1023/A:1025760311436. PubMed DOI

Smith E., Morowitz H.J. Universality in intermediary metabolism. Proc. Natl. Acad. Sci. USA. 2004;101:13168–13173. doi: 10.1073/pnas.0404922101. PubMed DOI PMC

Orgel L.E. The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol. 2008;6:e18. doi: 10.1371/journal.pbio.0060018. PubMed DOI PMC

Kamminga H. Historical perspective: the problem of the origin of life in the context of developments in biology. Origins. Life Evol. Biosph. 1988;18:1–11. doi: 10.1007/BF01808777. PubMed DOI

Caetano-Anollés G., Wang M., Caetano-Anollés D., Mittenthal J.E. The origin, evolution and structure of the protein world. Biochem. J. 2009;417:621–637. doi: 10.1042/BJ20082063. PubMed DOI

Plankensteiner K., Reiner H., Rode B. Prebiotic Chemistry: The Amino Acid and Peptide World. Curr. Org. Chem. 2005;9:1107–1114. doi: 10.2174/1385272054553640. DOI

Segré D., Ben-Eli D., Deamer D.W., Lancet D. The lipid world. Origins Life Evol. B. 2001;31:119–145. doi: 10.1023/A:1006746807104. PubMed DOI

Tessera M. Origin of evolution versus origin of life: A shift of paradigm. Int. J. Mol. Sci. 2011;12:3445–3458. doi: 10.3390/ijms12063445. PubMed DOI PMC

Sharov A.A. Coenzyme world model of the origin of life. Biosystems. 2016;144:8–17. doi: 10.1016/j.biosystems.2016.03.003. PubMed DOI PMC

Koonin E.V., Senkevich T.G., Dolja V.V. The ancient Virus World and evolution of cells. Biol. Direct. 2006;1:29. doi: 10.1186/1745-6150-1-29. PubMed DOI PMC

Lanier K.A., Williams L.D. The Origin of Life: Models and Data. J. Mol. Evol. 2017;84:85–92. doi: 10.1007/s00239-017-9783-y. PubMed DOI PMC

Xavier J.C., Patil K.R., Rocha I. Systems biology perspectives on minimal and simpler cells. Microbiol. Mol. Biol. Rev. 2014;78:487–509. doi: 10.1128/MMBR.00050-13. PubMed DOI PMC

Pross A. Causation and the Origin of Life. Metabolism or Replication First? Origins Life Evol. Biosph. 2004;34:307–321. doi: 10.1023/B:ORIG.0000016446.51012.bc. PubMed DOI

Wächtershäuser G. In Praise of Error. J. Mol. Evol. 2016;82:75–80. doi: 10.1007/s00239-015-9727-3. PubMed DOI

Sutherland J.D. Opinion: Studies on the origin of life — the end of the beginning. Nat. Rev. Chem. 2017:1. doi: 10.1038/s41570-016-0012. DOI

Ross D.S. It is Neither Frankenstein Nor a Submarine Alkaline Vent, It is Just the Second Law. BioEssays. 2018;40:1800149. doi: 10.1002/bies.201800149. PubMed DOI

Branscomb E., Russell M.J. Frankenstein or a Submarine Alkaline Vent: Who is Responsible for Abiogenesis? BioEssays. 2018;40:1700182. doi: 10.1002/bies.201700182. PubMed DOI

Emergence O. Workshop OQOL’09: Open Questions on the Origins of Life 2009. Origins Life Evol. B. 2010;40:347–497. PubMed

Oparin A.I. The origin of life (A. Synge, transl) In: BernaI J.D., editor. The Origin of Life. Weidenfeld & Nicolson; London, UK: 1967. pp. 197–234.

Haldane J.B.S. The Origin of Life. Ration. Annu. 1929:3–10.

Pennington D.D., Simpson G.L., McConnell M.S., Fair J.M., Baker R.J. Transdisciplinary Research, Transformative Learning, and Transformative Science. BioScience. 2013;63:564–573. doi: 10.1525/bio.2013.63.7.9. DOI

Polanco, C, Why interdisciplinary research matters. Nature. 2015;525:305. doi: 10.1038/525305a. PubMed DOI

Morowitz H., Smith E. Energy flow and the organization of life. Complexity. 2007;13:51–59. doi: 10.1002/cplx.20191. DOI

Kaufmann M. On the free energy that drove primordial anabolism. Int. J. Mol. Sci. 2009;10:1853–1871. doi: 10.3390/ijms10041853. PubMed DOI PMC

Zhang W., Li F., Nie L. Integrating multiple “omics” analysis for microbial biology: application and methodologies. Microbiology. 2010;156:287–301. doi: 10.1099/mic.0.034793-0. PubMed DOI

Larsen P., Hamada Y., Gilbert J. Modeling microbial communities: current, developing, and future technologies for predicting microbial community interaction. J. Biotechnol. 2012;160:17–24. doi: 10.1016/j.jbiotec.2012.03.009. PubMed DOI

Waite J.H., Glein C.R., Perryman R.S., Teolis B.D., Magee B.A., Miller G., Grimes J., Perry M.E., Miller K.E., Bouquet A., et al. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science. 2017;356:155–159. doi: 10.1126/science.aai8703. PubMed DOI

Zahnle K., Arndt N., Cockell C., Halliday A., Nisbet E., Selsis F., Sleep N.H. Emergence of a Habitable Planet. Space Sci. Rev. 2007:35–78. doi: 10.1007/s11214-007-9225-z. DOI

Ehrenfreund P., Irvine W., Becker L., Blank J., Brucato J.R., Colangeli L., Derenne S., Despois D., Dutrey A., Fraaije H., et al. Astrophysical and astrochemical insights into the origin of life. Rep. Prog. Phys. 2002;65:1427–1487. doi: 10.1088/0034-4885/65/10/202. DOI

Vance S.D. Handbook of Exoplanets. Springer; Berlin, Germany: 2018. The Habitability of Icy Ocean Worlds in the Solar System; pp. 1–23.

Postberg F., Khawaja N., Abel B., Choblet G., Glein C.R., Gudipati M.S., Henderson B.L., Hsu H.-W., Kempf S., Klenner F., et al. Macromolecular organic compounds from the depths of Enceladus. Nature. 2018;558:564–568. doi: 10.1038/s41586-018-0246-4. PubMed DOI PMC

Khawaja N., Postberg F., Hillier J., Klenner F., Kempf S., Nölle L., Reviol R., Zou Z., Srama R. Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Mon. Not. R. Astron. Soc. 2019;489:5231–5243. doi: 10.1093/mnras/stz2280. DOI

Hörst S.M., Yelle R.V., Buch A., Carrasco N., Cernogora G., Dutuit O., Quirico E., Sciamma-O’Brien E., Smith M.A., Somogyi Á., et al. Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment. Astrobiology. 2012;12:809–817. doi: 10.1089/ast.2011.0623. PubMed DOI PMC

Sousa F.L., Thiergart T., Landan G., Nelson-Sathi S., Pereira I.A.C., Allen J.F., Lane N., Martin W.F. Early bioenergetic evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013;368:20130088. doi: 10.1098/rstb.2013.0088. PubMed DOI PMC

Müller V., Chowdhury N.P., Basen M. Electron Bifurcation: A Long-Hidden Energy-Coupling Mechanism. Annu. Rev. Microbiol. 2018;72:331–353. doi: 10.1146/annurev-micro-090816-093440. PubMed DOI

Whicher A., Camprubi E., Pinna S., Herschy B., Lane N. Acetyl Phosphate as a Primordial Energy Currency at the Origin of Life. Origins. Life Evol. Biosph. 2018;48:159–179. doi: 10.1007/s11084-018-9555-8. PubMed DOI PMC

Duve C.D. Clues from present-day biology: the thioester world. In: Brack A., editor. The Molecular Origins of Life. Cambridge University Press; Cambridge, UK: 1998. pp. 219–236.

Chandru K., Gilbert A., Butch C., Aono M., Cleaves H.J. The Abiotic Chemistry of Thiolated Acetate Derivatives and the Origin of Life. Sci. Rep. 2016;6:29883. doi: 10.1038/srep29883. PubMed DOI PMC

Schoepp-Cothenet B., van Lis R., Atteia A., Baymann F., Capowiez L., Ducluzeau A.-L., Duval S., ten Brink F., Russell M.J., Nitschke W. On the universal core of bioenergetics. Biochim. Biophys. Acta. 2013;1827:79–93. doi: 10.1016/j.bbabio.2012.09.005. PubMed DOI

Jinich A., Sanchez-Lengeling B., Ren H., Goldford J.E., Noor E., Sanders J.N., Segrè D., Aspuru-Guzik A. A thermodynamic atlas of carbon redox chemical space. BioRxiv. 2019:245811. PubMed PMC

Mattia E., Otto S. Supramolecular systems chemistry. Nat. Nanotechnol. 2015;10:111–119. doi: 10.1038/nnano.2014.337. PubMed DOI

Kim H., Smith H.B., Mathis C., Raymond J., Walker S.I. Universal scaling across biochemical networks on Earth. Sci. Adv. 2019;5:eaau0149. doi: 10.1126/sciadv.aau0149. PubMed DOI PMC

Markovitch O., Lancet D. Excess mutual catalysis is required for effective evolvability. Artif. Life. 2012;18:243–266. doi: 10.1162/artl_a_00064. PubMed DOI

Pascal R., Pross A. Stability and its manifestation in the chemical and biological worlds. Chem. Commun. 2015;51:16160–16165. doi: 10.1039/C5CC06260H. PubMed DOI

Xavier J.C., Hordijk W., Kauffman S., Steel M., Martin W.F. Autocatalytic chemical networks preceded proteins and RNA in evolution. [(accessed on 25 February 2020)];bioRxiv. doi: 10.1101/693879. Available online: https://www.biorxiv.org/content/10.1101/693879v1.abstract. DOI

Goldford J.E., Hartman H., Smith T.F., Segrè D. Remnants of an Ancient Metabolism without Phosphate. Cell. 2017;168:1126–1134.e9. doi: 10.1016/j.cell.2017.02.001. PubMed DOI

Goldford J.E., Segrè D. Modern views of ancient metabolic networks. Curr. Opin. Syst. Biol. 2018;8:117–124. doi: 10.1016/j.coisb.2018.01.004. DOI

Muchowska K.B., Varma S.J., Moran J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature. 2019;569:104–107. doi: 10.1038/s41586-019-1151-1. PubMed DOI PMC

Keller M.A., Turchyn A.V., Ralser M. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol. 2014;10:725. doi: 10.1002/msb.20145228. PubMed DOI PMC

Vincent L., Berg M., Krismer M., Saghafi S.S., Cosby J., Sankari T., Vetsigian K., Ii H.J.C., Baum D.A. Chemical Ecosystem Selection on Mineral Surfaces Reveals Long-Term Dynamics Consistent with the Spontaneous Emergence of Mutual Catalysis. Life. 2019;9:80. doi: 10.3390/life9040080. PubMed DOI PMC

Amend J.P., LaRowe D.E., McCollom T.M., Shock E.L. The energetics of organic synthesis inside and outside the cell. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013;368:20120255. doi: 10.1098/rstb.2012.0255. PubMed DOI PMC

Russell M.J., Martin W. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 2004;29:358–363. doi: 10.1016/j.tibs.2004.05.007. PubMed DOI

Preiner M., Igarashi K., Muchowska K.B., Yu M., Varma S.J., Kleinermanns K., Nobu M.K., Kamagata Y., Tüysüz H., Moran J., et al. A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 2020 doi: 10.1038/s41559-020-1125-6. in press. PubMed DOI

Barge L.M., White L.M. Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds. Astrobiology. 2017;17:820–833. doi: 10.1089/ast.2016.1633. PubMed DOI

Adami C., Labar T. From Entropy to Information: Biased Typewriters and the Origin of Life. [(accessed on 25 February 2020)];arXiv. 2015 Available online: https://arxiv.org/abs/1506.06988.1506.06988

Turk R.M., Chumachenko N.V., Yarus M. Multiple translational products from a five-nucleotide ribozyme. Proc. Natl. Acad. Sci. USA. 2010;107:4585–4589. doi: 10.1073/pnas.0912895107. PubMed DOI PMC

Szathmáry E. The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet. 1999;15:223–229. doi: 10.1016/S0168-9525(99)01730-8. PubMed DOI

Morris C.E. How did cells get their size? Anat. Rec. 2002;268:239–251. doi: 10.1002/ar.10158. PubMed DOI

Noller H.F. The driving force for molecular evolution of translation. RNA. 2004;10:1833–1837. doi: 10.1261/rna.7142404. PubMed DOI PMC

De Vladar H.P. Amino acid fermentation at the origin of the genetic code. Biol. Direct. 2012;7:6. doi: 10.1186/1745-6150-7-6. PubMed DOI PMC

Tagami S., Attwater J., Holliger P. Simple peptides derived from the ribosomal core potentiate RNA polymerase ribozyme function. Nat. Chem. 2017;9:325–332. doi: 10.1038/nchem.2739. PubMed DOI PMC

Maddox J. The genetic code by numbers. Nature. 1994;367:111. doi: 10.1038/367111a0. PubMed DOI

Yarus M. The Genetic Code and RNA-Amino Acid Affinities. Life. 2017;7:13. doi: 10.3390/life7020013. PubMed DOI PMC

Wong J.T. A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA. 1975;72:1909–1912. doi: 10.1073/pnas.72.5.1909. PubMed DOI PMC

Knight R.D., Freeland S.J., Landweber L.F. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem. Sci. 1999;24:241–247. doi: 10.1016/S0968-0004(99)01392-4. PubMed DOI

Kun Á., Radványi Á. The evolution of the genetic code: Impasses and challenges. Biosystems. 2018;164:217–225. doi: 10.1016/j.biosystems.2017.10.006. PubMed DOI

Higgs P.G., Pudritz R.E. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology. 2009;9:483–490. doi: 10.1089/ast.2008.0280. PubMed DOI

Müller M.M., Allison J.R., Hongdilokkul N., Gaillon L., Kast P., van Gunsteren W.F., Marlière P., Hilvert D. Directed evolution of a model primordial enzyme provides insights into the development of the genetic code. PLoS Genet. 2013;9:e1003187. doi: 10.1371/journal.pgen.1003187. PubMed DOI PMC

Ilardo M., Bose R., Meringer M., Rasulev B., Grefenstette N., Stephenson J., Freeland S., Gillams R.J., Butch C.J., Cleaves H.J. 2nd Adaptive Properties of the Genetically Encoded Amino Acid Alphabet Are Inherited from Its Subsets. Sci. Rep. 2019;9:12468. doi: 10.1038/s41598-019-47574-x. PubMed DOI PMC

Cartwright J.H.E., Giannerini S., González D.L. DNA as information: at the crossroads between biology, mathematics, physics and chemistry. Philos. Trans. A Math. Phys. Eng. Sci. 2016;374 doi: 10.1098/rsta.2015.0071. PubMed DOI PMC

Woese C.R., Dugre D.H., Saxinger W.C., Dugre S.A. The molecular basis for the genetic code. Proc. Natl. Acad. Sci. USA. 1966;55:966–974. doi: 10.1073/pnas.55.4.966. PubMed DOI PMC

Copley S.D., Smith E., Morowitz H.J. A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc. Natl. Acad. Sci. USA. 2005;102:4442–4447. doi: 10.1073/pnas.0501049102. PubMed DOI PMC

Koonin E.V., Novozhilov A.S. Origin and Evolution of the Universal Genetic Code. Annu. Rev. Genet. 2017;51:45–62. doi: 10.1146/annurev-genet-120116-024713. PubMed DOI

Scharf C., Virgo N., Cleaves H.J., 2nd, Aono M., Aubert-Kato N., Aydinoglu A., Barahona A., Barge L.M., Benner S.A., Biehl M., et al. A Strategy for Origins of Life Research. Astrobiology. 2015;15:1031–1042. doi: 10.1089/ast.2015.1113. PubMed DOI PMC

Gutekunst K. Hypothesis on the Synchronistic Evolution of Autotrophy and Heterotrophy. Trends Biochem. Sci. 2018;43:402–411. doi: 10.1016/j.tibs.2018.03.008. PubMed DOI

Mansy S.S., Szostak J.W. Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb. Symp. Quant. Biol. 2009;74:47–54. doi: 10.1101/sqb.2009.74.014. PubMed DOI

Cornell C.E., Black R.A., Xue M., Litz H.E., Ramsay A., Gordon M., Mileant A., Cohen Z.R., Williams J.A., Lee K.K., et al. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proc. Natl. Acad. Sci. USA. 2019;116:17239–17244. doi: 10.1073/pnas.1900275116. PubMed DOI PMC

Jordan S.F., Rammu H., Zheludev I.N., Hartley A.M., Maréchal A., Lane N. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat. Ecol. Evol. 2019;3:1705–1714. doi: 10.1038/s41559-019-1015-y. PubMed DOI

Monnard P.-A., Walde P. Current Ideas about Prebiological Compartmentalization. Life. 2015;5:1239–1263. doi: 10.3390/life5021239. PubMed DOI PMC

Dzieciol A.J., Mann S. Designs for life: protocell models in the laboratory. Chem. Soc. Rev. 2012;41:79–85. doi: 10.1039/C1CS15211D. PubMed DOI

Gardner P.M., Winzer K., Davis B.G. Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 2009;1:377–383. doi: 10.1038/nchem.296. PubMed DOI

Kurihara K., Tamura M., Shohda K.-I., Toyota T., Suzuki K., Sugawara T. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 2011;3:775–781. doi: 10.1038/nchem.1127. PubMed DOI

Gumpenberger T., Vorkapic D., Zingl F.G., Pressler K., Lackner S., Seper A., Reidl J., Schild S. Nucleoside uptake in Vibrio cholerae and its role in the transition fitness from host to environment. Mol. Microbiol. 2016;99:470–483. doi: 10.1111/mmi.13143. PubMed DOI

White H.B. 3rd Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 1976;7:101–104. doi: 10.1007/BF01732468. PubMed DOI

Bhowmik S., Krishnamurthy R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nat. Chem. 2019;11:1009–1018. doi: 10.1038/s41557-019-0322-x. PubMed DOI PMC

Trifonov E.N. Consensus temporal order of amino acids and evolution of the triplet code. Gene. 2000;261:139–151. doi: 10.1016/S0378-1119(00)00476-5. PubMed DOI

Parker E.T., Cleaves H.J., Bada J.L. Quantitation of α-hydroxy acids in complex prebiotic mixtures via liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2016;30:2043–2051. doi: 10.1002/rcm.7684. PubMed DOI

Sephton M.A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 2002;19:292–311. doi: 10.1039/b103775g. PubMed DOI

Johnson A.P., Cleaves H.J., Dworkin J.P., Glavin D.P., Lazcano A., Bada J.L. The Miller volcanic spark discharge experiment. Science. 2008;322:404. doi: 10.1126/science.1161527. PubMed DOI

Chandru K., Guttenberg N., Giri C., Hongo Y., Butch C., Mamajanov I., Cleaves H.J. Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries. Commun. Chem. 2018;1:30. doi: 10.1038/s42004-018-0031-1. DOI

Jia T.Z., Chandru K., Hongo Y., Afrin R., Usui T., Myojo K., Cleaves H.J. Membraneless polyester microdroplets as primordial compartments at the origins of life. Proc. Natl. Acad. Sci. USA. 2019;116:15830–15835. doi: 10.1073/pnas.1902336116. PubMed DOI PMC

Chandru K., Mamajanov I., Cleaves H.J., 2nd, Jia T.Z. Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry. Life. 2020;10:6. doi: 10.3390/life10010006. PubMed DOI PMC

Guttenberg N., Virgo N., Chandru K., Scharf C., Mamajanov I. Bulk measurements of messy chemistries are needed for a theory of the origins of life. Philos. Trans. Royal Soc. A. 2017;375 doi: 10.1098/rsta.2016.0347. PubMed DOI PMC

Schmitt-Kopplin P., Gabelica Z., Gougeon R.D., Fekete A., Kanawati B., Harir M., Gebefuegi I., Eckel G., Hertkorn N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA. 2010;107:2763–2768. doi: 10.1073/pnas.0912157107. PubMed DOI PMC

Arndt N.T., Nisbet E.G. Processes on the Young Earth and the Habitats of Early Life. Annu. Rev. Earth Planet. Sci. 2012;40:521–549. doi: 10.1146/annurev-earth-042711-105316. DOI

Nisbet E.G., Sleep N.H. The habitat and nature of early life. Nature. 2001;409:1083–1091. doi: 10.1038/35059210. PubMed DOI

Lang S.Q., Butterfield D.A., Schulte M., Kelley D.S., Lilley M.D. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta. 2010;74:941–952. doi: 10.1016/j.gca.2009.10.045. DOI

Herschy B., Whicher A., Camprubi E., Watson C., Dartnell L., Ward J., Evans J.R.G., Lane N. An origin-of-life reactor to simulate alkaline hydrothermal vents. J. Mol. Evol. 2014;79:213–227. doi: 10.1007/s00239-014-9658-4. PubMed DOI PMC

Weiss M.C., Sousa F.L., Mrnjavac N., Neukirchen S., Roettger M., Nelson-Sathi S., Martin W.F. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 2016;1:16116. doi: 10.1038/nmicrobiol.2016.116. PubMed DOI

Mulkidjanian A.Y., Bychkov A.Y., Dibrova D.V., Galperin M.Y., Koonin E.V. Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl. Acad. Sci. USA. 2012;109:E821–E830. doi: 10.1073/pnas.1117774109. PubMed DOI PMC

Milshteyn D., Damer B., Havig J., Deamer D. Amphiphilic Compounds Assemble into Membranous Vesicles in Hydrothermal Hot Spring Water but Not in Seawater. Life. 2018;8:11. doi: 10.3390/life8020011. PubMed DOI PMC

Becker S., Schneider C., Okamura H., Crisp A., Amatov T., Dejmek M., Carell T. Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 2018;9:163. doi: 10.1038/s41467-017-02639-1. PubMed DOI PMC

Varma S.J., Muchowska K.B., Chatelain P., Moran J. Native iron reduces CO to intermediates and end-products of the acetyl-CoA pathway. Nat. Ecol. Evol. 2018;2:1019–1024. doi: 10.1038/s41559-018-0542-2. PubMed DOI PMC

Garcia A.K., McShea H., Kolaczkowski B., Kaçar B. Reconstructed ancient nitrogenases suggest Mo-specific ancestry. Evol. Biol. 2019:520.

Bray M.S., Lenz T.K., Haynes J.W., Bowman J.C., Petrov A.S., Reddi A.R., Hud N.V., Williams L.D., Glass J.B. Multiple prebiotic metals mediate translation. Proc. Natl. Acad. Sci. USA. 2018;115:12164–12169. doi: 10.1073/pnas.1803636115. PubMed DOI PMC

Bonfio C., Godino E., Corsini M., de Biani F.F., Guella G., Mansy S.S. Prebiotic iron–sulfur peptide catalysts generate a pH gradient across model membranes of late protocells. Nat. Catal. 2018;1:616–623. doi: 10.1038/s41929-018-0116-3. DOI

Kreysing M., Keil L., Lanzmich S., Braun D. Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length. Nat. Chem. 2015;7:203–208. doi: 10.1038/nchem.2155. PubMed DOI

Hazen R.M., Sverjensky D.A. Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb. Perspect. Biol. 2010;2:a002162. doi: 10.1101/cshperspect.a002162. PubMed DOI PMC

Colón-Santos S., Cooper G.J.T., Cronin L. Taming the Combinatorial Explosion of the Formose Reaction via Recursion within Mineral Environments. ChemSystemsChem. 2019;54:104.

Sadownik J.W., Mattia E., Nowak P., Otto S. Diversification of self-replicating molecules. Nat. Chem. 2016;8:264–269. doi: 10.1038/nchem.2419. PubMed DOI

Semenov S.N., Kraft L.J., Ainla A., Zhao M., Baghbanzadeh M., Campbell V.E., Kang K., Fox J.M., Whitesides G.M. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature. 2016;537:656–660. doi: 10.1038/nature19776. PubMed DOI

Stelling J. Mathematical models in microbial systems biology. Curr. Opin. Microbiol. 2004;7:513–518. doi: 10.1016/j.mib.2004.08.004. PubMed DOI

Goldman A.D., Bernhard T.M., Dolzhenko E., Landweber L.F. LUCApedia: a database for the study of ancient life. Nucleic Acids Res. 2013;41:D1079–D1082. doi: 10.1093/nar/gks1217. PubMed DOI PMC

Nghe P., Hordijk W., Kauffman S.A., Walker S.I., Schmidt F.J., Kemble H., Yeates J.A.M., Lehman N. Prebiotic network evolution: six key parameters. Mol. Biosyst. 2015;11:3206–3217. doi: 10.1039/C5MB00593K. PubMed DOI

Woese C. The universal ancestor. Proc. Natl. Acad. Sci. USA. 1998;95:6854–6859. doi: 10.1073/pnas.95.12.6854. PubMed DOI PMC

Tocheva E.I., Ortega D.R., Jensen G.J. Sporulation, bacterial cell envelopes and the origin of life. Nat. Rev. Microbiol. 2016;14:535–542. doi: 10.1038/nrmicro.2016.85. PubMed DOI PMC

Hastings J., de Matos P., Dekker A., Ennis M., Harsha B., Kale N., Muthukrishnan V., Owen G., Turner S., Williams M., et al. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res. 2013;41:D456–D463. doi: 10.1093/nar/gks1146. PubMed DOI PMC

Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC

King Z.A., Lu J., Dräger A., Miller P., Federowicz S., Lerman J.A., Ebrahim A., Palsson B.O., Lewis N.E. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016;44:D515–D522. doi: 10.1093/nar/gkv1049. PubMed DOI PMC

Kim K.M., Caetano-Anollés G. The proteomic complexity and rise of the primordial ancestor of diversified life. BMC Evol. Biol. 2011;11:140. doi: 10.1186/1471-2148-11-140. PubMed DOI PMC

Delaye L., Becerra A. Cenancestor, the Last Universal Common Ancestor. Evol. Educ. Outreach. 2012;5:382–388. doi: 10.1007/s12052-012-0444-8. DOI

Theobald D.L. A formal test of the theory of universal common ancestry. Nature. 2010;465:219–222. doi: 10.1038/nature09014. PubMed DOI

Surman A.J., Rodriguez-Garcia M., Abul-Haija Y.M., Cooper G.J.T., Gromski P.S., Turk-MacLeod R., Mullin M., Mathis C., Walker S.I., Cronin L. Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions. Proc. Natl. Acad. Sci. USA. 2019;116:5387–5392. doi: 10.1073/pnas.1813987116. PubMed DOI PMC

Sleep N.H. Geological and Geochemical Constraints on the Origin and Evolution of Life. Astrobiology. 2018;18:1199–1219. doi: 10.1089/ast.2017.1778. PubMed DOI

Martin W., Russell M.J. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. B. 2007;362:1887–1926. doi: 10.1098/rstb.2006.1881. PubMed DOI PMC

Martin W., Baross J., Kelley D., Russell M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 2008;6:805–814. doi: 10.1038/nrmicro1991. PubMed DOI

Deamer D. The Role of Lipid Membranes in Life’s Origin. Life. 2017;7:5. doi: 10.3390/life7010005. PubMed DOI PMC

Westall F., Hickman-Lewis K., Hinman N., Gautret P., Campbell K.A., Bréhéret J.G., Foucher F., Hubert A., Sorieul S., Dass A.V., et al. A Hydrothermal-Sedimentary Context for the Origin of Life. Astrobiology. 2018;18:259–293. doi: 10.1089/ast.2017.1680. PubMed DOI PMC

Pearce B.K.D., Pudritz R.E., Semenov D.A., Henning T.K. Origin of the RNA world: The fate of nucleobases in warm little ponds. Proc. Natl. Acad. Sci. USA. 2017;114:11327–11332. doi: 10.1073/pnas.1710339114. PubMed DOI PMC

Ross D.S., Deamer D. Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis. Life. 2016;6:28. doi: 10.3390/life6030028. PubMed DOI PMC

Morasch M., Liu J., Dirscherl C.F., Ianeselli A., Kühnlein A., Le Vay K., Schwintek P., Islam S., Corpinot M.K., Scheu B., et al. Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules. Nat. Chem. 2019;11:779–788. doi: 10.1038/s41557-019-0299-5. PubMed DOI

Becker S., Feldmann J., Wiedemann S., Okamura H., Schneider C., Iwan K., Crisp A., Rossa M., Amatov T., Carell T. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science. 2019;366:76–82. doi: 10.1126/science.aax2747. PubMed DOI

Ooka H., McGlynn S.E., Nakamura R. Electrochemistry at Deep-Sea Hydrothermal Vents: Utilization of the Thermodynamic Driving Force towards the Autotrophic Origin of Life. ChemElectroChem. 2019;6:1316–1323. doi: 10.1002/celc.201801432. DOI

Mansy S.S., Schrum J.P., Krishnamurthy M., Tobé S., Treco D.A., Szostak J.W. Template-directed synthesis of a genetic polymer in a model protocell. Nature. 2008;454:122–125. doi: 10.1038/nature07018. PubMed DOI PMC

Lazcano A. Alexandr I. Oparin and the Origin of Life: A Historical Reassessment of the Heterotrophic Theory. J. Mol. Evol. 2016;83:214–222. doi: 10.1007/s00239-016-9773-5. PubMed DOI

Wood A.P., Aurikko J.P., Kelly D.P. A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol. Rev. 2004;28:335–352. doi: 10.1016/j.femsre.2003.12.001. PubMed DOI

Schönheit P., Buckel W., Martin W.F. On the Origin of Heterotrophy. Trends Microbiol. 2016;24:12–25. doi: 10.1016/j.tim.2015.10.003. PubMed DOI

Ashkenasy G., Hermans T.M., Otto S., Taylor A.F. Systems chemistry. Chem. Soc. Rev. 2017;46:2543–2554. doi: 10.1039/C7CS00117G. PubMed DOI

Pascal R., Pross A., Sutherland J.D. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol. 2013;3:130156. doi: 10.1098/rsob.130156. PubMed DOI PMC

Semenov S.N., Wong A.S.Y., van der Made R.M., Postma S.G.J., Groen J., van Roekel H.W.H., de Greef T.F.A., Huck W.T.S. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 2015;7:160–165. doi: 10.1038/nchem.2142. PubMed DOI

Thauer R.K., Kaster A.-K., Seedorf H., Buckel W., Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 2008;6:579–591. doi: 10.1038/nrmicro1931. PubMed DOI

Duim H., Otto S. Towards open-ended evolution in self-replicating molecular systems. Beilstein J. Org. Chem. 2017;13:1189–1203. doi: 10.3762/bjoc.13.118. PubMed DOI PMC

Deamer D., Weber A.L. Bioenergetics and Life’s Origins. Cold Spring Harb. Perspect. Biol. 2010;2:a004929. doi: 10.1101/cshperspect.a004929. PubMed DOI PMC

Boiteau L., Pascal R. Energy sources, self-organization, and the origin of life. Origins. Life Evol. Biosph. 2011;41:23–33. doi: 10.1007/s11084-010-9209-y. PubMed DOI

Krishnamurthy R. Life’s Biological Chemistry: A Destiny or Destination Starting from Prebiotic Chemistry? Chemistry. 2018;24:16708–16715. doi: 10.1002/chem.201801847. PubMed DOI

Szathmáry E., Maynard Smith J. From replicators to reproducers: the first major transitions leading to life. J. Theor. Biol. 1997;187:555–571. doi: 10.1006/jtbi.1996.0389. PubMed DOI

Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971;58:465–523. doi: 10.1007/BF00623322. PubMed DOI

Walker S.I., Davies P.C.W. The algorithmic origins of life. J. R. Soc. Interface. 2013;10:20120869. doi: 10.1098/rsif.2012.0869. PubMed DOI PMC

Segré D., Lancet D. Composing life. EMBO Rep. 2000;1:217–222. doi: 10.1093/embo-reports/kvd063. PubMed DOI PMC

Hordijk W., Steel M., Kauffman S.A. Molecular Diversity Required for the Formation of Autocatalytic Sets. Life. 2019;9:23. doi: 10.3390/life9010023. PubMed DOI PMC

Kostyrka G. What roles for viruses in origin of life scenarios? Stud. Hist. Philos. Biol. Biomed. Sci. 2016;59:135–144. doi: 10.1016/j.shpsc.2016.02.014. PubMed DOI

Stewart J.E. The Origins of Life: The Managed-Metabolism Hypothesis. Found. Sci. 2019;24:171–195. doi: 10.1007/s10699-018-9563-1. DOI

Vasas V., Szathmáry E., Santos M. Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. Proc. Natl. Acad. Sci. USA. 2010;107:1470–1475. doi: 10.1073/pnas.0912628107. PubMed DOI PMC

Sharma V., Annila A. Natural process–Natural selection. Biophys. Chem. 2007;127:123–128. doi: 10.1016/j.bpc.2007.01.005. PubMed DOI

Meléndez-Hevia E., Montero-Gómez N., Montero F. From prebiotic chemistry to cellular metabolism—The chemical evolution of metabolism before Darwinian natural selection. J. Theor. Biol. 2008;252:505–519. doi: 10.1016/j.jtbi.2007.11.012. PubMed DOI

Frenkel-Pinter M., Haynes J.W., C M., Petrov A.S., Burcar B.T., Krishnamurthy R., Hud N.V., Leman L.J., Williams L.D. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl. Acad. Sci. USA. 2019;116:16338–16346. doi: 10.1073/pnas.1904849116. PubMed DOI PMC

Hud N.V., Cafferty B.J., Krishnamurthy R., Williams L.D. The Origin of RNA and “My Grandfather’s Axe”. Chem. Biol. 2013;20:466–474. doi: 10.1016/j.chembiol.2013.03.012. PubMed DOI

Joyce G.F. Molecular evolution: booting up life. Nature. 2002;420:278–279. doi: 10.1038/420278a. PubMed DOI

Calvin M. Mineral Origins of Life Genetic Takeover and the Mineral Origins of Life A. G. Cairns-Smith. BioScience. 1983;33:596. doi: 10.2307/1309220. DOI

Schmitt-Kopplin P., Hemmler D., Moritz F., Gougeon R.D., Lucio M., Meringer M., Müller C., Harir M., Hertkorn N. Systems chemical analytics: introduction to the challenges of chemical complexity analysis. Faraday Discuss. 2019;218:9–28. doi: 10.1039/C9FD00078J. PubMed DOI

Geisberger T., Diederich P., Steiner T., Eisenreich W., Schmitt-Kopplin P., Huber C. Evolutionary Steps in the Analytics of Primordial Metabolic Evolution. Life. 2019;9:50. doi: 10.3390/life9020050. PubMed DOI PMC

Richert C. Prebiotic chemistry and human intervention. Nat. Commun. 2018;9:5177. doi: 10.1038/s41467-018-07219-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...