The Future of Origin of Life Research: Bridging Decades-Old Divisions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MA-1426/21-1
Deutsche Forschungsgemeinschaft
666053
European Research Council - International
93046
Volkswagen Foundation
C.Z. 02.2.69/0.0/0.0/16_027/0008351
European Structural and Investment Funds Operational Programme
GGP-2019-029
Research Encouragement Fund UKM
803768
European Research Council - International
VRG15-007
Vienna Science and Technology Fund
GINOP 2.3.2-15-2016-00057
National Research, Development and Innovation Office
724908
European Research Council - International
PubMed
32110893
PubMed Central
PMC7151616
DOI
10.3390/life10030020
PII: life10030020
Knihovny.cz E-zdroje
- Klíčová slova
- LUCA, abiogenesis, bottom-up, early life, emergence, origins of life, prebiotic chemistry, top-down,
- Publikační typ
- časopisecké články MeSH
Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.
Archaea Biology and Ecogenomics Division University of Vienna 1090 Vienna Austria
Cellular and Molecular Biophysics Max Planck Institute of Biochemistry 82152 Martinsried Germany
Cluster of Excellence on Plant Sciences University of Cologne 50674 Cologne Germany
Department of Cellular Computational and Integrative Biology University of Trento 38123 Trento Italy
Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
Institut für Geologische Wissenschaften Freie Universität Berlin 12249 Berlin Germany
Institute of Evolution MTA Centre for Ecological Research Klebelsberg Kuno u 3 H 8237 Tihany Hungary
Institute of Molecular Evolution University of Düsseldorf 40225 Düsseldorf Germany
Institute of Synthetic Microbiology University of Düsseldorf 40225 Düsseldorf Germany
Lycée Colbert BP 50620 59208 Tourcoing Cedex France
Origins Center Department of Earth Sciences Utrecht University 3584 CB Utrecht The Netherlands
Quantitative and Theoretical Biology University of Düsseldorf 40225 Düsseldorf Germany
School of Biological and Chemical Sciences Queen Mary University of London London E1 4DQ UK
School of Chemistry University of Glasgow Glasgow G128QQ UK
School of Earth Sciences University of Bristol Bristol BS8 1RL UK
Systems Biophysics Physics Department Ludwig Maximilians Universität München 80799 Munich Germany
UK Centre for Astrobiology School of Chemistry University of Edinburgh Edinburgh EH9 3FJ UK
Université de Strasbourg CNRS ISIS 8 allée Gaspard Monge 67000 Strasbourg France
Zobrazit více v PubMed
Gayon J., Malaterre C., Morange M., Raulin-Cerceau F., Tirard S. Defining Life: conference proceedings. Origins. Life Evol. Biosph. 2010;40:119–120. doi: 10.1007/s11084-010-9189-y. PubMed DOI
Mariscal C., Barahona A., Aubert-Kato N., Aydinoglu A.U., Bartlett S., Cárdenas M.L., Chandru K., Cleland C., Cocanougher B.T., Comfort N., et al. Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: A Workshop Report. Origins. Life Evol. Biosph. 2019;49:111–145. doi: 10.1007/s11084-019-09580-x. PubMed DOI
Javaux E.J. Challenges in evidencing the earliest traces of life. Nature. 2019;572:451–460. doi: 10.1038/s41586-019-1436-4. PubMed DOI
Betts H.C., Puttick M.N., Clark J.W., Williams T.A., Donoghue P.C.J., Pisani D. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2018;2:1556–1562. doi: 10.1038/s41559-018-0644-x. PubMed DOI PMC
Czárán T., Könnyű B., Szathmáry E. Metabolically Coupled Replicator Systems: Overview of an RNA-world model concept of prebiotic evolution on mineral surfaces. J. Theor. Biol. 2015;381:39–54. doi: 10.1016/j.jtbi.2015.06.002. PubMed DOI
Davies P.C.W., Benner S.A., Cleland C.E., Lineweaver C.H., McKay C.P., Wolfe-Simon F. Signatures of a shadow biosphere. Astrobiology. 2009;9:241–249. doi: 10.1089/ast.2008.0251. PubMed DOI
McLendon C., Opalko F.J., Illangkoon H.I., Benner S.A. Solubility of polyethers in hydrocarbons at low temperatures. A model for potential genetic backbones on warm titans. Astrobiology. 2015;15:200–206. doi: 10.1089/ast.2014.1212. PubMed DOI
Wöhler F. Ueber künstliche Bildung des Harnstoffs. Ann. Phys. Chem. 1828;87:253–256. doi: 10.1002/andp.18280870206. DOI
Butlerow A. Bildung einer zuckerartigen Substanz durch Synthese. Liebigs. Ann Chem. 1861;120:295–298. doi: 10.1002/jlac.18611200308. DOI
Breslow R. On the mechanism of the formose reaction. Tetrahedron Lett. 1959;1:22–26. doi: 10.1016/S0040-4039(01)99487-0. DOI
Miller S.L. A production of amino acids under possible primitive earth conditions. Science. 1953;117:528–529. doi: 10.1126/science.117.3046.528. PubMed DOI
Miller S.L., Urey H.C. Organic compound synthesis on the primitive earth. Science. 1959;130:245–251. doi: 10.1126/science.130.3370.245. PubMed DOI
Hargreaves W.R., Mulvihill S.J., Deamer D.W. Synthesis of phospholipids and membranes in prebiotic conditions. Nature. 1977;266:78–80. doi: 10.1038/266078a0. PubMed DOI
Ruiz-Mirazo K., Briones C., de la Escosura A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 2014;114:285–366. doi: 10.1021/cr2004844. PubMed DOI
Kitadai N., Maruyama S. Origins of building blocks of life: A review. Geosci. Front. 2018;9:1117–1153. doi: 10.1016/j.gsf.2017.07.007. DOI
Attwater J., Raguram A., Morgunov A.S., Gianni E., Holliger P. Ribozyme-catalysed RNA synthesis using triplet building blocks. eLife. 2018;7 doi: 10.7554/eLife.35255. PubMed DOI PMC
Horning D.P., Joyce G.F. Amplification of RNA by an RNA polymerase ribozyme. Proc. Natl. Acad. Sci. USA. 2016;113:9786–9791. doi: 10.1073/pnas.1610103113. PubMed DOI PMC
Rajamani S., Vlassov A., Benner S., Coombs A., Olasagasti F., Deamer D. Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Origins. Life Evol. Biosph. 2008;38:57–74. doi: 10.1007/s11084-007-9113-2. PubMed DOI
Mamajanov I., MacDonald P.J., Ying J., Duncanson D.M., Dowdy G.R., Walker C.A., Engelhart A.E., Fernández F.M., Grover M.A., Hud N.V., et al. Ester Formation and Hydrolysis during Wet–Dry Cycles: Generation of Far-from-Equilibrium Polymers in a Model Prebiotic Reaction. Macromolecules. 2014;47:1334–1343. doi: 10.1021/ma402256d. DOI
Griffith E.C., Vaida V. In situ observation of peptide bond formation at the water-air interface. Proc. Natl. Acad. Sci. USA. 2012;109:15697–15701. doi: 10.1073/pnas.1210029109. PubMed DOI PMC
Rodriguez-Garcia M., Surman A.J., Cooper G.J.T., Suárez-Marina I., Hosni Z., Lee M.P., Cronin L. Formation of oligopeptides in high yield under simple programmable conditions. Nat. Commun. 2015;6:8385. doi: 10.1038/ncomms9385. PubMed DOI PMC
Erastova V., Degiacomi M.T., G Fraser D., Greenwell H.C. Mineral surface chemistry control for origin of prebiotic peptides. Nat. Commun. 2017;8:2033. doi: 10.1038/s41467-017-02248-y. PubMed DOI PMC
Gibson D.G., Benders G.A., Andrews-Pfannkoch C., Denisova E.A., Baden-Tillson H., Zaveri J., Stockwell T.B., Brownley A., Thomas D.W., Algire M.A., et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. 2008;319:1215–1220. doi: 10.1126/science.1151721. PubMed DOI
Cello J., Paul A.V., Wimmer E. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template. Science. 2002;297:1016–1018. doi: 10.1126/science.1072266. PubMed DOI
Walker S.I., Packard N., Cody G.D. Re-conceptualizing the origins of life. Philos. Trans. A Math. Phys. Eng. Sci. 2017;375 doi: 10.1098/rsta.2016.0337. PubMed DOI PMC
Locey K.J., Lennon J.T. Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA. 2016;113:5970–5975. doi: 10.1073/pnas.1521291113. PubMed DOI PMC
Milo R. What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays. 2013;35:1050–1055. doi: 10.1002/bies.201300066. PubMed DOI PMC
Mayr E. Cause and effect in biology. Science. 1961;134:1501–1506. doi: 10.1126/science.134.3489.1501. PubMed DOI
Fry I. The origins of research into the origins of life. Endeavour. 2006;30:24–28. doi: 10.1016/j.endeavour.2005.12.002. PubMed DOI
Cleland C.E. Pluralism or unity in biology: could microbes hold the secret to life? Biol. Philos. 2013;28:189–204. doi: 10.1007/s10539-013-9361-7. DOI
Mushegian A.R., Koonin E.V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. USA. 1996;93:10268–10273. doi: 10.1073/pnas.93.19.10268. PubMed DOI PMC
Koonin E.V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 2003;1:127–136. doi: 10.1038/nrmicro751. PubMed DOI
Lagesen K., Ussery D.W., Wassenaar T.M. Genome update: the 1000th genome-a cautionary tale. Microbiology. 2010;156:603–608. doi: 10.1099/mic.0.038257-0. PubMed DOI
Sutherland J.D. The Origin of Life--Out of the Blue. Angew. Chem. Int. Ed Engl. 2016;55:104–121. doi: 10.1002/anie.201506585. PubMed DOI
Ralser M. An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life. Biochem. J. 2018;475:2577–2592. doi: 10.1042/BCJ20160866. PubMed DOI PMC
Yarus M. Getting past the RNA world: the initial Darwinian ancestor. Cold Spring Harb. Perspect. Biol. 2011;3 doi: 10.1101/cshperspect.a003590. PubMed DOI PMC
Prosdocimi F., José M.V., Farias S.T. De Be Introduced to the First Universal Common Ancestor (FUCA): The Great-Grandmother of LUCA (Last Universal Common Ancestor) [(accessed on 25 February 2020)];2018 doi: 10.20944/preprints201806.0035.v1. Available online: https://europepmc.org/article/ppr/ppr49297. DOI
Lahav N., Nir S., Elitzur A.C. The emergence of life on Earth. Prog. Biophys. Mol. Biol. 2001;75:75–120. doi: 10.1016/S0079-6107(01)00003-7. PubMed DOI
Ikehara K. Evolutionary Steps in the Emergence of Life Deduced from the Bottom-Up Approach and GADV Hypothesis (Top-Down Approach) Life. 2016;6:6. doi: 10.3390/life6010006. PubMed DOI PMC
Vicens J., Vicens Q. Emergences of supramolecular chemistry: from supramolecular chemistry to supramolecular science. J. Incl. Phenom. Macrocycl. Chem. 2011;71:251–274. doi: 10.1007/s10847-011-0001-z. DOI
Rich A. On the problems of evolution and biochemical information transfer. In: Kash M., Pullman B., editors. Horizons In Biochemistry. Academic Press; New York, NY, USA: 1962. pp. 103–126.
Gilbert W. Origin of life: The RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI
Kruger K., Grabowski P.J., Zaug A.J., Sands J., Gottschling D.E., Cech T.R. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982;31:147–157. doi: 10.1016/0092-8674(82)90414-7. PubMed DOI
Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983;35:849–857. doi: 10.1016/0092-8674(83)90117-4. PubMed DOI
Robertson M.P., Joyce G.F. The origins of the RNA world. Cold Spring Harb. Perspect. Biol. 2012;4 doi: 10.1101/cshperspect.a003608. PubMed DOI PMC
Orgel L.E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 2004;39:99–123. PubMed
Shapiro R. A Replicator Was Not Involved in the Origin of Life. IUBMB: Life. 2000;49:173–176. doi: 10.1080/713803621. PubMed DOI
Oivanen M., Kuusela S., Lönnberg H. Kinetics and Mechanisms for the Cleavage and Isomerization of the Phosphodiester Bonds of RNA by Brønsted Acids and Bases. Chem. Rev. 1998;98:961–990. doi: 10.1021/cr960425x. PubMed DOI
Wächtershäuser G. The origin of life and its methodological challenge. J. Theor. Biol. 1997;187:483–494. doi: 10.1006/jtbi.1996.0383. PubMed DOI
Dyson F. Origins of Life. Cambridge University Press; Cambridge, UK: 1999.
De Duve C. A Research Proposal on the Origin Of Life. Closing Lecture given at the ISSOL Congress in Oaxaca, Mexico, on July 4, 2002. Origins Life Evol. B. 2003;33:559–574. doi: 10.1023/A:1025760311436. PubMed DOI
Smith E., Morowitz H.J. Universality in intermediary metabolism. Proc. Natl. Acad. Sci. USA. 2004;101:13168–13173. doi: 10.1073/pnas.0404922101. PubMed DOI PMC
Orgel L.E. The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol. 2008;6:e18. doi: 10.1371/journal.pbio.0060018. PubMed DOI PMC
Kamminga H. Historical perspective: the problem of the origin of life in the context of developments in biology. Origins. Life Evol. Biosph. 1988;18:1–11. doi: 10.1007/BF01808777. PubMed DOI
Caetano-Anollés G., Wang M., Caetano-Anollés D., Mittenthal J.E. The origin, evolution and structure of the protein world. Biochem. J. 2009;417:621–637. doi: 10.1042/BJ20082063. PubMed DOI
Plankensteiner K., Reiner H., Rode B. Prebiotic Chemistry: The Amino Acid and Peptide World. Curr. Org. Chem. 2005;9:1107–1114. doi: 10.2174/1385272054553640. DOI
Segré D., Ben-Eli D., Deamer D.W., Lancet D. The lipid world. Origins Life Evol. B. 2001;31:119–145. doi: 10.1023/A:1006746807104. PubMed DOI
Tessera M. Origin of evolution versus origin of life: A shift of paradigm. Int. J. Mol. Sci. 2011;12:3445–3458. doi: 10.3390/ijms12063445. PubMed DOI PMC
Sharov A.A. Coenzyme world model of the origin of life. Biosystems. 2016;144:8–17. doi: 10.1016/j.biosystems.2016.03.003. PubMed DOI PMC
Koonin E.V., Senkevich T.G., Dolja V.V. The ancient Virus World and evolution of cells. Biol. Direct. 2006;1:29. doi: 10.1186/1745-6150-1-29. PubMed DOI PMC
Lanier K.A., Williams L.D. The Origin of Life: Models and Data. J. Mol. Evol. 2017;84:85–92. doi: 10.1007/s00239-017-9783-y. PubMed DOI PMC
Xavier J.C., Patil K.R., Rocha I. Systems biology perspectives on minimal and simpler cells. Microbiol. Mol. Biol. Rev. 2014;78:487–509. doi: 10.1128/MMBR.00050-13. PubMed DOI PMC
Pross A. Causation and the Origin of Life. Metabolism or Replication First? Origins Life Evol. Biosph. 2004;34:307–321. doi: 10.1023/B:ORIG.0000016446.51012.bc. PubMed DOI
Wächtershäuser G. In Praise of Error. J. Mol. Evol. 2016;82:75–80. doi: 10.1007/s00239-015-9727-3. PubMed DOI
Sutherland J.D. Opinion: Studies on the origin of life — the end of the beginning. Nat. Rev. Chem. 2017:1. doi: 10.1038/s41570-016-0012. DOI
Ross D.S. It is Neither Frankenstein Nor a Submarine Alkaline Vent, It is Just the Second Law. BioEssays. 2018;40:1800149. doi: 10.1002/bies.201800149. PubMed DOI
Branscomb E., Russell M.J. Frankenstein or a Submarine Alkaline Vent: Who is Responsible for Abiogenesis? BioEssays. 2018;40:1700182. doi: 10.1002/bies.201700182. PubMed DOI
Emergence O. Workshop OQOL’09: Open Questions on the Origins of Life 2009. Origins Life Evol. B. 2010;40:347–497. PubMed
Oparin A.I. The origin of life (A. Synge, transl) In: BernaI J.D., editor. The Origin of Life. Weidenfeld & Nicolson; London, UK: 1967. pp. 197–234.
Haldane J.B.S. The Origin of Life. Ration. Annu. 1929:3–10.
Pennington D.D., Simpson G.L., McConnell M.S., Fair J.M., Baker R.J. Transdisciplinary Research, Transformative Learning, and Transformative Science. BioScience. 2013;63:564–573. doi: 10.1525/bio.2013.63.7.9. DOI
Polanco, C, Why interdisciplinary research matters. Nature. 2015;525:305. doi: 10.1038/525305a. PubMed DOI
Morowitz H., Smith E. Energy flow and the organization of life. Complexity. 2007;13:51–59. doi: 10.1002/cplx.20191. DOI
Kaufmann M. On the free energy that drove primordial anabolism. Int. J. Mol. Sci. 2009;10:1853–1871. doi: 10.3390/ijms10041853. PubMed DOI PMC
Zhang W., Li F., Nie L. Integrating multiple “omics” analysis for microbial biology: application and methodologies. Microbiology. 2010;156:287–301. doi: 10.1099/mic.0.034793-0. PubMed DOI
Larsen P., Hamada Y., Gilbert J. Modeling microbial communities: current, developing, and future technologies for predicting microbial community interaction. J. Biotechnol. 2012;160:17–24. doi: 10.1016/j.jbiotec.2012.03.009. PubMed DOI
Waite J.H., Glein C.R., Perryman R.S., Teolis B.D., Magee B.A., Miller G., Grimes J., Perry M.E., Miller K.E., Bouquet A., et al. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science. 2017;356:155–159. doi: 10.1126/science.aai8703. PubMed DOI
Zahnle K., Arndt N., Cockell C., Halliday A., Nisbet E., Selsis F., Sleep N.H. Emergence of a Habitable Planet. Space Sci. Rev. 2007:35–78. doi: 10.1007/s11214-007-9225-z. DOI
Ehrenfreund P., Irvine W., Becker L., Blank J., Brucato J.R., Colangeli L., Derenne S., Despois D., Dutrey A., Fraaije H., et al. Astrophysical and astrochemical insights into the origin of life. Rep. Prog. Phys. 2002;65:1427–1487. doi: 10.1088/0034-4885/65/10/202. DOI
Vance S.D. Handbook of Exoplanets. Springer; Berlin, Germany: 2018. The Habitability of Icy Ocean Worlds in the Solar System; pp. 1–23.
Postberg F., Khawaja N., Abel B., Choblet G., Glein C.R., Gudipati M.S., Henderson B.L., Hsu H.-W., Kempf S., Klenner F., et al. Macromolecular organic compounds from the depths of Enceladus. Nature. 2018;558:564–568. doi: 10.1038/s41586-018-0246-4. PubMed DOI PMC
Khawaja N., Postberg F., Hillier J., Klenner F., Kempf S., Nölle L., Reviol R., Zou Z., Srama R. Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Mon. Not. R. Astron. Soc. 2019;489:5231–5243. doi: 10.1093/mnras/stz2280. DOI
Hörst S.M., Yelle R.V., Buch A., Carrasco N., Cernogora G., Dutuit O., Quirico E., Sciamma-O’Brien E., Smith M.A., Somogyi Á., et al. Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment. Astrobiology. 2012;12:809–817. doi: 10.1089/ast.2011.0623. PubMed DOI PMC
Sousa F.L., Thiergart T., Landan G., Nelson-Sathi S., Pereira I.A.C., Allen J.F., Lane N., Martin W.F. Early bioenergetic evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013;368:20130088. doi: 10.1098/rstb.2013.0088. PubMed DOI PMC
Müller V., Chowdhury N.P., Basen M. Electron Bifurcation: A Long-Hidden Energy-Coupling Mechanism. Annu. Rev. Microbiol. 2018;72:331–353. doi: 10.1146/annurev-micro-090816-093440. PubMed DOI
Whicher A., Camprubi E., Pinna S., Herschy B., Lane N. Acetyl Phosphate as a Primordial Energy Currency at the Origin of Life. Origins. Life Evol. Biosph. 2018;48:159–179. doi: 10.1007/s11084-018-9555-8. PubMed DOI PMC
Duve C.D. Clues from present-day biology: the thioester world. In: Brack A., editor. The Molecular Origins of Life. Cambridge University Press; Cambridge, UK: 1998. pp. 219–236.
Chandru K., Gilbert A., Butch C., Aono M., Cleaves H.J. The Abiotic Chemistry of Thiolated Acetate Derivatives and the Origin of Life. Sci. Rep. 2016;6:29883. doi: 10.1038/srep29883. PubMed DOI PMC
Schoepp-Cothenet B., van Lis R., Atteia A., Baymann F., Capowiez L., Ducluzeau A.-L., Duval S., ten Brink F., Russell M.J., Nitschke W. On the universal core of bioenergetics. Biochim. Biophys. Acta. 2013;1827:79–93. doi: 10.1016/j.bbabio.2012.09.005. PubMed DOI
Jinich A., Sanchez-Lengeling B., Ren H., Goldford J.E., Noor E., Sanders J.N., Segrè D., Aspuru-Guzik A. A thermodynamic atlas of carbon redox chemical space. BioRxiv. 2019:245811. PubMed PMC
Mattia E., Otto S. Supramolecular systems chemistry. Nat. Nanotechnol. 2015;10:111–119. doi: 10.1038/nnano.2014.337. PubMed DOI
Kim H., Smith H.B., Mathis C., Raymond J., Walker S.I. Universal scaling across biochemical networks on Earth. Sci. Adv. 2019;5:eaau0149. doi: 10.1126/sciadv.aau0149. PubMed DOI PMC
Markovitch O., Lancet D. Excess mutual catalysis is required for effective evolvability. Artif. Life. 2012;18:243–266. doi: 10.1162/artl_a_00064. PubMed DOI
Pascal R., Pross A. Stability and its manifestation in the chemical and biological worlds. Chem. Commun. 2015;51:16160–16165. doi: 10.1039/C5CC06260H. PubMed DOI
Xavier J.C., Hordijk W., Kauffman S., Steel M., Martin W.F. Autocatalytic chemical networks preceded proteins and RNA in evolution. [(accessed on 25 February 2020)];bioRxiv. doi: 10.1101/693879. Available online: https://www.biorxiv.org/content/10.1101/693879v1.abstract. DOI
Goldford J.E., Hartman H., Smith T.F., Segrè D. Remnants of an Ancient Metabolism without Phosphate. Cell. 2017;168:1126–1134.e9. doi: 10.1016/j.cell.2017.02.001. PubMed DOI
Goldford J.E., Segrè D. Modern views of ancient metabolic networks. Curr. Opin. Syst. Biol. 2018;8:117–124. doi: 10.1016/j.coisb.2018.01.004. DOI
Muchowska K.B., Varma S.J., Moran J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature. 2019;569:104–107. doi: 10.1038/s41586-019-1151-1. PubMed DOI PMC
Keller M.A., Turchyn A.V., Ralser M. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol. 2014;10:725. doi: 10.1002/msb.20145228. PubMed DOI PMC
Vincent L., Berg M., Krismer M., Saghafi S.S., Cosby J., Sankari T., Vetsigian K., Ii H.J.C., Baum D.A. Chemical Ecosystem Selection on Mineral Surfaces Reveals Long-Term Dynamics Consistent with the Spontaneous Emergence of Mutual Catalysis. Life. 2019;9:80. doi: 10.3390/life9040080. PubMed DOI PMC
Amend J.P., LaRowe D.E., McCollom T.M., Shock E.L. The energetics of organic synthesis inside and outside the cell. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013;368:20120255. doi: 10.1098/rstb.2012.0255. PubMed DOI PMC
Russell M.J., Martin W. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 2004;29:358–363. doi: 10.1016/j.tibs.2004.05.007. PubMed DOI
Preiner M., Igarashi K., Muchowska K.B., Yu M., Varma S.J., Kleinermanns K., Nobu M.K., Kamagata Y., Tüysüz H., Moran J., et al. A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 2020 doi: 10.1038/s41559-020-1125-6. in press. PubMed DOI
Barge L.M., White L.M. Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds. Astrobiology. 2017;17:820–833. doi: 10.1089/ast.2016.1633. PubMed DOI
Adami C., Labar T. From Entropy to Information: Biased Typewriters and the Origin of Life. [(accessed on 25 February 2020)];arXiv. 2015 Available online: https://arxiv.org/abs/1506.06988.1506.06988
Turk R.M., Chumachenko N.V., Yarus M. Multiple translational products from a five-nucleotide ribozyme. Proc. Natl. Acad. Sci. USA. 2010;107:4585–4589. doi: 10.1073/pnas.0912895107. PubMed DOI PMC
Szathmáry E. The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet. 1999;15:223–229. doi: 10.1016/S0168-9525(99)01730-8. PubMed DOI
Morris C.E. How did cells get their size? Anat. Rec. 2002;268:239–251. doi: 10.1002/ar.10158. PubMed DOI
Noller H.F. The driving force for molecular evolution of translation. RNA. 2004;10:1833–1837. doi: 10.1261/rna.7142404. PubMed DOI PMC
De Vladar H.P. Amino acid fermentation at the origin of the genetic code. Biol. Direct. 2012;7:6. doi: 10.1186/1745-6150-7-6. PubMed DOI PMC
Tagami S., Attwater J., Holliger P. Simple peptides derived from the ribosomal core potentiate RNA polymerase ribozyme function. Nat. Chem. 2017;9:325–332. doi: 10.1038/nchem.2739. PubMed DOI PMC
Maddox J. The genetic code by numbers. Nature. 1994;367:111. doi: 10.1038/367111a0. PubMed DOI
Yarus M. The Genetic Code and RNA-Amino Acid Affinities. Life. 2017;7:13. doi: 10.3390/life7020013. PubMed DOI PMC
Wong J.T. A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA. 1975;72:1909–1912. doi: 10.1073/pnas.72.5.1909. PubMed DOI PMC
Knight R.D., Freeland S.J., Landweber L.F. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem. Sci. 1999;24:241–247. doi: 10.1016/S0968-0004(99)01392-4. PubMed DOI
Kun Á., Radványi Á. The evolution of the genetic code: Impasses and challenges. Biosystems. 2018;164:217–225. doi: 10.1016/j.biosystems.2017.10.006. PubMed DOI
Higgs P.G., Pudritz R.E. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology. 2009;9:483–490. doi: 10.1089/ast.2008.0280. PubMed DOI
Müller M.M., Allison J.R., Hongdilokkul N., Gaillon L., Kast P., van Gunsteren W.F., Marlière P., Hilvert D. Directed evolution of a model primordial enzyme provides insights into the development of the genetic code. PLoS Genet. 2013;9:e1003187. doi: 10.1371/journal.pgen.1003187. PubMed DOI PMC
Ilardo M., Bose R., Meringer M., Rasulev B., Grefenstette N., Stephenson J., Freeland S., Gillams R.J., Butch C.J., Cleaves H.J. 2nd Adaptive Properties of the Genetically Encoded Amino Acid Alphabet Are Inherited from Its Subsets. Sci. Rep. 2019;9:12468. doi: 10.1038/s41598-019-47574-x. PubMed DOI PMC
Cartwright J.H.E., Giannerini S., González D.L. DNA as information: at the crossroads between biology, mathematics, physics and chemistry. Philos. Trans. A Math. Phys. Eng. Sci. 2016;374 doi: 10.1098/rsta.2015.0071. PubMed DOI PMC
Woese C.R., Dugre D.H., Saxinger W.C., Dugre S.A. The molecular basis for the genetic code. Proc. Natl. Acad. Sci. USA. 1966;55:966–974. doi: 10.1073/pnas.55.4.966. PubMed DOI PMC
Copley S.D., Smith E., Morowitz H.J. A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc. Natl. Acad. Sci. USA. 2005;102:4442–4447. doi: 10.1073/pnas.0501049102. PubMed DOI PMC
Koonin E.V., Novozhilov A.S. Origin and Evolution of the Universal Genetic Code. Annu. Rev. Genet. 2017;51:45–62. doi: 10.1146/annurev-genet-120116-024713. PubMed DOI
Scharf C., Virgo N., Cleaves H.J., 2nd, Aono M., Aubert-Kato N., Aydinoglu A., Barahona A., Barge L.M., Benner S.A., Biehl M., et al. A Strategy for Origins of Life Research. Astrobiology. 2015;15:1031–1042. doi: 10.1089/ast.2015.1113. PubMed DOI PMC
Gutekunst K. Hypothesis on the Synchronistic Evolution of Autotrophy and Heterotrophy. Trends Biochem. Sci. 2018;43:402–411. doi: 10.1016/j.tibs.2018.03.008. PubMed DOI
Mansy S.S., Szostak J.W. Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb. Symp. Quant. Biol. 2009;74:47–54. doi: 10.1101/sqb.2009.74.014. PubMed DOI
Cornell C.E., Black R.A., Xue M., Litz H.E., Ramsay A., Gordon M., Mileant A., Cohen Z.R., Williams J.A., Lee K.K., et al. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proc. Natl. Acad. Sci. USA. 2019;116:17239–17244. doi: 10.1073/pnas.1900275116. PubMed DOI PMC
Jordan S.F., Rammu H., Zheludev I.N., Hartley A.M., Maréchal A., Lane N. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat. Ecol. Evol. 2019;3:1705–1714. doi: 10.1038/s41559-019-1015-y. PubMed DOI
Monnard P.-A., Walde P. Current Ideas about Prebiological Compartmentalization. Life. 2015;5:1239–1263. doi: 10.3390/life5021239. PubMed DOI PMC
Dzieciol A.J., Mann S. Designs for life: protocell models in the laboratory. Chem. Soc. Rev. 2012;41:79–85. doi: 10.1039/C1CS15211D. PubMed DOI
Gardner P.M., Winzer K., Davis B.G. Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 2009;1:377–383. doi: 10.1038/nchem.296. PubMed DOI
Kurihara K., Tamura M., Shohda K.-I., Toyota T., Suzuki K., Sugawara T. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 2011;3:775–781. doi: 10.1038/nchem.1127. PubMed DOI
Gumpenberger T., Vorkapic D., Zingl F.G., Pressler K., Lackner S., Seper A., Reidl J., Schild S. Nucleoside uptake in Vibrio cholerae and its role in the transition fitness from host to environment. Mol. Microbiol. 2016;99:470–483. doi: 10.1111/mmi.13143. PubMed DOI
White H.B. 3rd Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 1976;7:101–104. doi: 10.1007/BF01732468. PubMed DOI
Bhowmik S., Krishnamurthy R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nat. Chem. 2019;11:1009–1018. doi: 10.1038/s41557-019-0322-x. PubMed DOI PMC
Trifonov E.N. Consensus temporal order of amino acids and evolution of the triplet code. Gene. 2000;261:139–151. doi: 10.1016/S0378-1119(00)00476-5. PubMed DOI
Parker E.T., Cleaves H.J., Bada J.L. Quantitation of α-hydroxy acids in complex prebiotic mixtures via liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2016;30:2043–2051. doi: 10.1002/rcm.7684. PubMed DOI
Sephton M.A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 2002;19:292–311. doi: 10.1039/b103775g. PubMed DOI
Johnson A.P., Cleaves H.J., Dworkin J.P., Glavin D.P., Lazcano A., Bada J.L. The Miller volcanic spark discharge experiment. Science. 2008;322:404. doi: 10.1126/science.1161527. PubMed DOI
Chandru K., Guttenberg N., Giri C., Hongo Y., Butch C., Mamajanov I., Cleaves H.J. Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries. Commun. Chem. 2018;1:30. doi: 10.1038/s42004-018-0031-1. DOI
Jia T.Z., Chandru K., Hongo Y., Afrin R., Usui T., Myojo K., Cleaves H.J. Membraneless polyester microdroplets as primordial compartments at the origins of life. Proc. Natl. Acad. Sci. USA. 2019;116:15830–15835. doi: 10.1073/pnas.1902336116. PubMed DOI PMC
Chandru K., Mamajanov I., Cleaves H.J., 2nd, Jia T.Z. Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry. Life. 2020;10:6. doi: 10.3390/life10010006. PubMed DOI PMC
Guttenberg N., Virgo N., Chandru K., Scharf C., Mamajanov I. Bulk measurements of messy chemistries are needed for a theory of the origins of life. Philos. Trans. Royal Soc. A. 2017;375 doi: 10.1098/rsta.2016.0347. PubMed DOI PMC
Schmitt-Kopplin P., Gabelica Z., Gougeon R.D., Fekete A., Kanawati B., Harir M., Gebefuegi I., Eckel G., Hertkorn N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA. 2010;107:2763–2768. doi: 10.1073/pnas.0912157107. PubMed DOI PMC
Arndt N.T., Nisbet E.G. Processes on the Young Earth and the Habitats of Early Life. Annu. Rev. Earth Planet. Sci. 2012;40:521–549. doi: 10.1146/annurev-earth-042711-105316. DOI
Nisbet E.G., Sleep N.H. The habitat and nature of early life. Nature. 2001;409:1083–1091. doi: 10.1038/35059210. PubMed DOI
Lang S.Q., Butterfield D.A., Schulte M., Kelley D.S., Lilley M.D. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta. 2010;74:941–952. doi: 10.1016/j.gca.2009.10.045. DOI
Herschy B., Whicher A., Camprubi E., Watson C., Dartnell L., Ward J., Evans J.R.G., Lane N. An origin-of-life reactor to simulate alkaline hydrothermal vents. J. Mol. Evol. 2014;79:213–227. doi: 10.1007/s00239-014-9658-4. PubMed DOI PMC
Weiss M.C., Sousa F.L., Mrnjavac N., Neukirchen S., Roettger M., Nelson-Sathi S., Martin W.F. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 2016;1:16116. doi: 10.1038/nmicrobiol.2016.116. PubMed DOI
Mulkidjanian A.Y., Bychkov A.Y., Dibrova D.V., Galperin M.Y., Koonin E.V. Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl. Acad. Sci. USA. 2012;109:E821–E830. doi: 10.1073/pnas.1117774109. PubMed DOI PMC
Milshteyn D., Damer B., Havig J., Deamer D. Amphiphilic Compounds Assemble into Membranous Vesicles in Hydrothermal Hot Spring Water but Not in Seawater. Life. 2018;8:11. doi: 10.3390/life8020011. PubMed DOI PMC
Becker S., Schneider C., Okamura H., Crisp A., Amatov T., Dejmek M., Carell T. Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 2018;9:163. doi: 10.1038/s41467-017-02639-1. PubMed DOI PMC
Varma S.J., Muchowska K.B., Chatelain P., Moran J. Native iron reduces CO to intermediates and end-products of the acetyl-CoA pathway. Nat. Ecol. Evol. 2018;2:1019–1024. doi: 10.1038/s41559-018-0542-2. PubMed DOI PMC
Garcia A.K., McShea H., Kolaczkowski B., Kaçar B. Reconstructed ancient nitrogenases suggest Mo-specific ancestry. Evol. Biol. 2019:520.
Bray M.S., Lenz T.K., Haynes J.W., Bowman J.C., Petrov A.S., Reddi A.R., Hud N.V., Williams L.D., Glass J.B. Multiple prebiotic metals mediate translation. Proc. Natl. Acad. Sci. USA. 2018;115:12164–12169. doi: 10.1073/pnas.1803636115. PubMed DOI PMC
Bonfio C., Godino E., Corsini M., de Biani F.F., Guella G., Mansy S.S. Prebiotic iron–sulfur peptide catalysts generate a pH gradient across model membranes of late protocells. Nat. Catal. 2018;1:616–623. doi: 10.1038/s41929-018-0116-3. DOI
Kreysing M., Keil L., Lanzmich S., Braun D. Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length. Nat. Chem. 2015;7:203–208. doi: 10.1038/nchem.2155. PubMed DOI
Hazen R.M., Sverjensky D.A. Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb. Perspect. Biol. 2010;2:a002162. doi: 10.1101/cshperspect.a002162. PubMed DOI PMC
Colón-Santos S., Cooper G.J.T., Cronin L. Taming the Combinatorial Explosion of the Formose Reaction via Recursion within Mineral Environments. ChemSystemsChem. 2019;54:104.
Sadownik J.W., Mattia E., Nowak P., Otto S. Diversification of self-replicating molecules. Nat. Chem. 2016;8:264–269. doi: 10.1038/nchem.2419. PubMed DOI
Semenov S.N., Kraft L.J., Ainla A., Zhao M., Baghbanzadeh M., Campbell V.E., Kang K., Fox J.M., Whitesides G.M. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature. 2016;537:656–660. doi: 10.1038/nature19776. PubMed DOI
Stelling J. Mathematical models in microbial systems biology. Curr. Opin. Microbiol. 2004;7:513–518. doi: 10.1016/j.mib.2004.08.004. PubMed DOI
Goldman A.D., Bernhard T.M., Dolzhenko E., Landweber L.F. LUCApedia: a database for the study of ancient life. Nucleic Acids Res. 2013;41:D1079–D1082. doi: 10.1093/nar/gks1217. PubMed DOI PMC
Nghe P., Hordijk W., Kauffman S.A., Walker S.I., Schmidt F.J., Kemble H., Yeates J.A.M., Lehman N. Prebiotic network evolution: six key parameters. Mol. Biosyst. 2015;11:3206–3217. doi: 10.1039/C5MB00593K. PubMed DOI
Woese C. The universal ancestor. Proc. Natl. Acad. Sci. USA. 1998;95:6854–6859. doi: 10.1073/pnas.95.12.6854. PubMed DOI PMC
Tocheva E.I., Ortega D.R., Jensen G.J. Sporulation, bacterial cell envelopes and the origin of life. Nat. Rev. Microbiol. 2016;14:535–542. doi: 10.1038/nrmicro.2016.85. PubMed DOI PMC
Hastings J., de Matos P., Dekker A., Ennis M., Harsha B., Kale N., Muthukrishnan V., Owen G., Turner S., Williams M., et al. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res. 2013;41:D456–D463. doi: 10.1093/nar/gks1146. PubMed DOI PMC
Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC
King Z.A., Lu J., Dräger A., Miller P., Federowicz S., Lerman J.A., Ebrahim A., Palsson B.O., Lewis N.E. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016;44:D515–D522. doi: 10.1093/nar/gkv1049. PubMed DOI PMC
Kim K.M., Caetano-Anollés G. The proteomic complexity and rise of the primordial ancestor of diversified life. BMC Evol. Biol. 2011;11:140. doi: 10.1186/1471-2148-11-140. PubMed DOI PMC
Delaye L., Becerra A. Cenancestor, the Last Universal Common Ancestor. Evol. Educ. Outreach. 2012;5:382–388. doi: 10.1007/s12052-012-0444-8. DOI
Theobald D.L. A formal test of the theory of universal common ancestry. Nature. 2010;465:219–222. doi: 10.1038/nature09014. PubMed DOI
Surman A.J., Rodriguez-Garcia M., Abul-Haija Y.M., Cooper G.J.T., Gromski P.S., Turk-MacLeod R., Mullin M., Mathis C., Walker S.I., Cronin L. Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions. Proc. Natl. Acad. Sci. USA. 2019;116:5387–5392. doi: 10.1073/pnas.1813987116. PubMed DOI PMC
Sleep N.H. Geological and Geochemical Constraints on the Origin and Evolution of Life. Astrobiology. 2018;18:1199–1219. doi: 10.1089/ast.2017.1778. PubMed DOI
Martin W., Russell M.J. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. B. 2007;362:1887–1926. doi: 10.1098/rstb.2006.1881. PubMed DOI PMC
Martin W., Baross J., Kelley D., Russell M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 2008;6:805–814. doi: 10.1038/nrmicro1991. PubMed DOI
Deamer D. The Role of Lipid Membranes in Life’s Origin. Life. 2017;7:5. doi: 10.3390/life7010005. PubMed DOI PMC
Westall F., Hickman-Lewis K., Hinman N., Gautret P., Campbell K.A., Bréhéret J.G., Foucher F., Hubert A., Sorieul S., Dass A.V., et al. A Hydrothermal-Sedimentary Context for the Origin of Life. Astrobiology. 2018;18:259–293. doi: 10.1089/ast.2017.1680. PubMed DOI PMC
Pearce B.K.D., Pudritz R.E., Semenov D.A., Henning T.K. Origin of the RNA world: The fate of nucleobases in warm little ponds. Proc. Natl. Acad. Sci. USA. 2017;114:11327–11332. doi: 10.1073/pnas.1710339114. PubMed DOI PMC
Ross D.S., Deamer D. Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis. Life. 2016;6:28. doi: 10.3390/life6030028. PubMed DOI PMC
Morasch M., Liu J., Dirscherl C.F., Ianeselli A., Kühnlein A., Le Vay K., Schwintek P., Islam S., Corpinot M.K., Scheu B., et al. Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules. Nat. Chem. 2019;11:779–788. doi: 10.1038/s41557-019-0299-5. PubMed DOI
Becker S., Feldmann J., Wiedemann S., Okamura H., Schneider C., Iwan K., Crisp A., Rossa M., Amatov T., Carell T. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science. 2019;366:76–82. doi: 10.1126/science.aax2747. PubMed DOI
Ooka H., McGlynn S.E., Nakamura R. Electrochemistry at Deep-Sea Hydrothermal Vents: Utilization of the Thermodynamic Driving Force towards the Autotrophic Origin of Life. ChemElectroChem. 2019;6:1316–1323. doi: 10.1002/celc.201801432. DOI
Mansy S.S., Schrum J.P., Krishnamurthy M., Tobé S., Treco D.A., Szostak J.W. Template-directed synthesis of a genetic polymer in a model protocell. Nature. 2008;454:122–125. doi: 10.1038/nature07018. PubMed DOI PMC
Lazcano A. Alexandr I. Oparin and the Origin of Life: A Historical Reassessment of the Heterotrophic Theory. J. Mol. Evol. 2016;83:214–222. doi: 10.1007/s00239-016-9773-5. PubMed DOI
Wood A.P., Aurikko J.P., Kelly D.P. A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol. Rev. 2004;28:335–352. doi: 10.1016/j.femsre.2003.12.001. PubMed DOI
Schönheit P., Buckel W., Martin W.F. On the Origin of Heterotrophy. Trends Microbiol. 2016;24:12–25. doi: 10.1016/j.tim.2015.10.003. PubMed DOI
Ashkenasy G., Hermans T.M., Otto S., Taylor A.F. Systems chemistry. Chem. Soc. Rev. 2017;46:2543–2554. doi: 10.1039/C7CS00117G. PubMed DOI
Pascal R., Pross A., Sutherland J.D. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol. 2013;3:130156. doi: 10.1098/rsob.130156. PubMed DOI PMC
Semenov S.N., Wong A.S.Y., van der Made R.M., Postma S.G.J., Groen J., van Roekel H.W.H., de Greef T.F.A., Huck W.T.S. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 2015;7:160–165. doi: 10.1038/nchem.2142. PubMed DOI
Thauer R.K., Kaster A.-K., Seedorf H., Buckel W., Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 2008;6:579–591. doi: 10.1038/nrmicro1931. PubMed DOI
Duim H., Otto S. Towards open-ended evolution in self-replicating molecular systems. Beilstein J. Org. Chem. 2017;13:1189–1203. doi: 10.3762/bjoc.13.118. PubMed DOI PMC
Deamer D., Weber A.L. Bioenergetics and Life’s Origins. Cold Spring Harb. Perspect. Biol. 2010;2:a004929. doi: 10.1101/cshperspect.a004929. PubMed DOI PMC
Boiteau L., Pascal R. Energy sources, self-organization, and the origin of life. Origins. Life Evol. Biosph. 2011;41:23–33. doi: 10.1007/s11084-010-9209-y. PubMed DOI
Krishnamurthy R. Life’s Biological Chemistry: A Destiny or Destination Starting from Prebiotic Chemistry? Chemistry. 2018;24:16708–16715. doi: 10.1002/chem.201801847. PubMed DOI
Szathmáry E., Maynard Smith J. From replicators to reproducers: the first major transitions leading to life. J. Theor. Biol. 1997;187:555–571. doi: 10.1006/jtbi.1996.0389. PubMed DOI
Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971;58:465–523. doi: 10.1007/BF00623322. PubMed DOI
Walker S.I., Davies P.C.W. The algorithmic origins of life. J. R. Soc. Interface. 2013;10:20120869. doi: 10.1098/rsif.2012.0869. PubMed DOI PMC
Segré D., Lancet D. Composing life. EMBO Rep. 2000;1:217–222. doi: 10.1093/embo-reports/kvd063. PubMed DOI PMC
Hordijk W., Steel M., Kauffman S.A. Molecular Diversity Required for the Formation of Autocatalytic Sets. Life. 2019;9:23. doi: 10.3390/life9010023. PubMed DOI PMC
Kostyrka G. What roles for viruses in origin of life scenarios? Stud. Hist. Philos. Biol. Biomed. Sci. 2016;59:135–144. doi: 10.1016/j.shpsc.2016.02.014. PubMed DOI
Stewart J.E. The Origins of Life: The Managed-Metabolism Hypothesis. Found. Sci. 2019;24:171–195. doi: 10.1007/s10699-018-9563-1. DOI
Vasas V., Szathmáry E., Santos M. Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. Proc. Natl. Acad. Sci. USA. 2010;107:1470–1475. doi: 10.1073/pnas.0912628107. PubMed DOI PMC
Sharma V., Annila A. Natural process–Natural selection. Biophys. Chem. 2007;127:123–128. doi: 10.1016/j.bpc.2007.01.005. PubMed DOI
Meléndez-Hevia E., Montero-Gómez N., Montero F. From prebiotic chemistry to cellular metabolism—The chemical evolution of metabolism before Darwinian natural selection. J. Theor. Biol. 2008;252:505–519. doi: 10.1016/j.jtbi.2007.11.012. PubMed DOI
Frenkel-Pinter M., Haynes J.W., C M., Petrov A.S., Burcar B.T., Krishnamurthy R., Hud N.V., Leman L.J., Williams L.D. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl. Acad. Sci. USA. 2019;116:16338–16346. doi: 10.1073/pnas.1904849116. PubMed DOI PMC
Hud N.V., Cafferty B.J., Krishnamurthy R., Williams L.D. The Origin of RNA and “My Grandfather’s Axe”. Chem. Biol. 2013;20:466–474. doi: 10.1016/j.chembiol.2013.03.012. PubMed DOI
Joyce G.F. Molecular evolution: booting up life. Nature. 2002;420:278–279. doi: 10.1038/420278a. PubMed DOI
Calvin M. Mineral Origins of Life Genetic Takeover and the Mineral Origins of Life A. G. Cairns-Smith. BioScience. 1983;33:596. doi: 10.2307/1309220. DOI
Schmitt-Kopplin P., Hemmler D., Moritz F., Gougeon R.D., Lucio M., Meringer M., Müller C., Harir M., Hertkorn N. Systems chemical analytics: introduction to the challenges of chemical complexity analysis. Faraday Discuss. 2019;218:9–28. doi: 10.1039/C9FD00078J. PubMed DOI
Geisberger T., Diederich P., Steiner T., Eisenreich W., Schmitt-Kopplin P., Huber C. Evolutionary Steps in the Analytics of Primordial Metabolic Evolution. Life. 2019;9:50. doi: 10.3390/life9020050. PubMed DOI PMC
Richert C. Prebiotic chemistry and human intervention. Nat. Commun. 2018;9:5177. doi: 10.1038/s41467-018-07219-5. PubMed DOI PMC
Peptides En Route from Prebiotic to Biotic Catalysis
Prebiotic oligomerization and self-assembly of structurally diverse xenobiological monomers