Membraneless polyester microdroplets as primordial compartments at the origins of life
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31332006
PubMed Central
PMC6690027
DOI
10.1073/pnas.1902336116
PII: 1902336116
Knihovny.cz E-zdroje
- Klíčová slova
- membraneless compartments, origins of life, polyesters, prebiotic chemistry, self-assembly,
- MeSH
- fluorescenční barviva chemie MeSH
- FRAP MeSH
- koncentrace vodíkových iontů MeSH
- kyseliny karboxylové chemie MeSH
- membrány umělé * MeSH
- polyestery chemická syntéza chemie MeSH
- původ života * MeSH
- RNA chemie MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorescenční barviva MeSH
- kyseliny karboxylové MeSH
- membrány umělé * MeSH
- polyestery MeSH
- RNA MeSH
Compartmentalization was likely essential for primitive chemical systems during the emergence of life, both for preventing leakage of important components, i.e., genetic materials, and for enhancing chemical reactions. Although life as we know it uses lipid bilayer-based compartments, the diversity of prebiotic chemistry may have enabled primitive living systems to start from other types of boundary systems. Here, we demonstrate membraneless compartmentalization based on prebiotically available organic compounds, α-hydroxy acids (αHAs), which are generally coproduced along with α-amino acids in prebiotic settings. Facile polymerization of αHAs provides a model pathway for the assembly of combinatorially diverse primitive compartments on early Earth. We characterized membraneless microdroplets generated from homo- and heteropolyesters synthesized from drying solutions of αHAs endowed with various side chains. These compartments can preferentially and differentially segregate and compartmentalize fluorescent dyes and fluorescently tagged RNA, providing readily available compartments that could have facilitated chemical evolution by protecting, exchanging, and encapsulating primitive components. Protein function within and RNA function in the presence of certain droplets is also preserved, suggesting the potential relevance of such droplets to various origins of life models. As a lipid amphiphile can also assemble around certain droplets, this further shows the droplets' potential compatibility with and scaffolding ability for nascent biomolecular systems that could have coexisted in complex chemical systems. These model compartments could have been more accessible in a "messy" prebiotic environment, enabling the localization of a variety of protometabolic and replication processes that could be subjected to further chemical evolution before the advent of the Last Universal Common Ancestor.
Blue Marble Space Institute of Science Seattle WA 98154
Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 30332
Earth Life Science Institute Tokyo Institute of Technology Meguro ku 152 8550 Tokyo Japan
Earth Life Science Institute Tokyo Institute of Technology Meguro ku 152 8550 Tokyo Japan;
Zobrazit více v PubMed
Szostak J. W., Bartel D. P., Luisi P. L., Synthesizing life. Nature 409, 387–390 (2001). PubMed
Fallah-Araghi A., et al. , Enhanced chemical synthesis at soft interfaces: A universal reaction-adsorption mechanism in microcompartments. Phys. Rev. Lett. 112, 028301 (2014). PubMed
Alberts B., Johnson A., Lewis J., Roberts K., Walter P., Eds., “The lipid bilayer” in Molecular Biology of the Cell (Garland Science, New York, 2002). https://www.ncbi.nlm.nih.gov/books/NBK26871/. Accessed 1 November 2018.
McCollom T. M., Ritter G., Simoneit B. R. T., Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig. Life Evol. Biosph. 29, 153–166 (1999). PubMed
Cleaves H. J., Prebiotic chemistry: What we know, what we don’t. Evol. Educ. Outreach 5, 342–360 (2012).
Mansy S. S., Szostak J. W., Thermostability of model protocell membranes. Proc. Natl. Acad. Sci. U.S.A. 105, 13351–13355 (2008). PubMed PMC
Terasawa H., Nishimura K., Suzuki H., Matsuura T., Yomo T., Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. Proc. Natl. Acad. Sci. U.S.A. 109, 5942–5947 (2012). PubMed PMC
Budin I., Prwyes N., Zhang N., Szostak J. W., Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions. Biophys. J. 107, 1582–1590 (2014). PubMed PMC
Adamala K., Szostak J. W., Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342, 1098–1100 (2013). PubMed PMC
Deamer D., The role of lipid membranes in life’s origin. Life (Basel) 7, E5 (2017). PubMed PMC
Pir Cakmak F., Keating C. D., Combining catalytic microparticles with droplets formed by phase coexistence: Adsorption and activity of natural clays at the aqueous/aqueous interface. Sci. Rep. 7, 3215 (2017). PubMed PMC
Mann S., Systems of creation: The emergence of life from nonliving matter. Acc. Chem. Res. 45, 2131–2141 (2012). PubMed
Cooper G. J. T., et al. , Modular redox-active inorganic chemical cells: iCHELLs. Angew. Chem. Int. Ed. Engl. 50, 10373–10376 (2011). PubMed
Tena-Solsona M., Wanzke C., Riess B., Bausch A. R., Boekhoven J., Self-selection of dissipative assemblies driven by primitive chemical reaction networks. Nat. Commun. 9, 2044 (2018). PubMed PMC
Hyman A. A., Brangwynne C. P., Beyond stereospecificity: Liquids and mesoscale organization of cytoplasm. Dev. Cell 21, 14–16 (2011). PubMed
Guttenberg N., Virgo N., Chandru K., Scharf C., Mamajanov I., Bulk measurements of messy chemistries are needed for a theory of the origins of life. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160347 (2017). PubMed PMC
Parker E. T., Cleaves H. J. 2nd, Bada J. L., Fernández F. M., Quantitation of α-hydroxy acids in complex prebiotic mixtures via liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 30, 2043–2051 (2016). PubMed
Cronin J. R., Cooper G. W., Pizzarello S., Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite. Adv. Space Res. 15, 91–97 (1995). PubMed
Peltzer E. T., Bada J. L., α-Hydroxycarboxylic acids in the Murchison meteorite. Nature 272, 443–444 (1978).
Chandru K., et al. , Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries. Commun. Chem. 1, 30 (2018).
Ojha L., et al. , Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015).
Grimm S. L., et al. , The nature of the TRAPPIST-1 exoplanets. A&A 613, A68 (2018).
Mulkidjanian A. Y., Bychkov A. Y., Dibrova D. V., Galperin M. Y., Koonin E. V., Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl. Acad. Sci. U.S.A. 109, E821–E830 (2012). PubMed PMC
Adam Z. R., et al. , Estimating the capacity for production of formamide by radioactive minerals on the prebiotic Earth. Sci. Rep. 8, 265 (2018). PubMed PMC
Iqbal M., et al. , Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online 18, 18 (2016). PubMed PMC
Priftis D., Tirrell M., Phase behaviour and complex coacervation of aqueous polypeptide solutions. Soft Matter 8, 9396–9405 (2012).
Jia T. Z., Hentrich C., Szostak J. W., Rapid RNA exchange in aqueous two-phase system and coacervate droplets. Orig. Life Evol. Biosph. 44, 1–12 (2014). PubMed PMC
Mason A. F., Buddingh’ B. C., Williams D. S., van Hest J. C. M., Hierarchical self-assembly of a copolymer-stabilized coacervate protocell. J. Am. Chem. Soc. 139, 17309–17312 (2017). PubMed PMC
Zangi R., Hagen M., Berne B. J., Effect of ions on the hydrophobic interaction between two plates. J. Am. Chem. Soc. 129, 4678–4686 (2007). PubMed
Hurwitz S., Harris R. N., Werner C. A., Murphy F., Heat flow in vapor dominated areas of the Yellowstone plateau volcanic field: Implications for the thermal budget of the Yellowstone Caldera. J. Geophys. Res. 117, B10207 (2012).
Deamer D., Weber A. L., Bioenergetics and life’s origins. Cold Spring Harb. Perspect. Biol. 2, a004929 (2010). PubMed PMC
Biancalana M., Koide S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 1804, 1405–1412 (2010). PubMed PMC
Phair R. D., Gorski S. A., Misteli T., Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods Enzymol. 375, 393–414 (2004). PubMed
Berhanu S., Ueda T., Kuruma Y., Artificial photosynthetic cell producing energy for protein synthesis. Nat. Commun. 10, 1325 (2019). PubMed PMC
Adamala K. P., Engelhart A. E., Szostak J. W., Collaboration between primitive cell membranes and soluble catalysts. Nat. Commun. 7, 11041 (2016). PubMed PMC
Holland H. D., “The geologic history of seawater” in Treatise on Geochemistry, Holland H. D., Turekian K. K., Eds. (Elsevier, Amsterdam, 2007), pp. 1–46.
Shao H., Ray J. R., Jun Y.-S., Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions. Environ. Sci. Technol. 44, 5999–6005 (2010). PubMed
Takenaka N., Tanaka M., Okitsu K., Bandow H., Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH. J. Phys. Chem. A 110, 10628–10632 (2006). PubMed
Keil L. M. R., Möller F. M., Kieß M., Kudella P. W., Mast C. B., Proton gradients and pH oscillations emerge from heat flow at the microscale. Nat. Commun. 8, 1897 (2017). PubMed PMC
Ratzke C., Gore J., Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 16, e2004248 (2018). PubMed PMC
Quinn S. J., et al. , Sodium and ionic strength sensing by the calcium receptor. J. Biol. Chem. 273, 19579–19586 (1998). PubMed
Meyers S. R., Malinverno A., Proterozoic Milankovitch cycles and the history of the solar system. Proc. Natl. Acad. Sci. U.S.A. 115, 6363–6368 (2018). PubMed PMC
Yin Y., et al. , Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation. Nat. Commun. 7, 10658 (2016). PubMed PMC
Mansy S. S., Membrane transport in primitive cells. Cold Spring Harb. Perspect. Biol. 2, a002188 (2010). PubMed PMC
Gillams R. J., Jia T. Z., Mineral surface-templated self-assembling systems: Case studies from nanoscience and surface science towards origins of life research. Life (Basel) 8, E10 (2018). PubMed PMC
Smith E., Morowitz H. J., The Origin and Nature of Life on Earth: The Emergence of the Fourth Geosphere (Cambridge University Press, 2016).
Gilbert W., Origin of life: The RNA world. Nature 319, 618 (1986).
Ikehara K., [GADV]-protein world hypothesis on the origin of life. Orig. Life Evol. Biosph. 44, 299–302 (2014). PubMed PMC
Woese C. R., Fox G. E., The concept of cellular evolution. J. Mol. Evol. 10, 1–6 (1977). PubMed
Lancet D., Zidovetzki R., Markovitch O., Systems protobiology: Origin of life in lipid catalytic networks. J. R. Soc. Interface 15, 20180159 (2018). PubMed PMC
Muchowska K. B., et al. , Metals promote sequences of the reverse Krebs cycle. Nat. Ecol. Evol. 1, 1716–1721 (2017). PubMed PMC
Schmitt-Kopplin P., et al. , High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. U.S.A. 107, 2763–2768 (2010). PubMed PMC
Mamajanov I., Callahan M. P., Dworkin J. P., Cody G. D., Prebiotic alternatives to proteins: Structure and function of hyperbranched polyesters. Orig. Life Evol. Biosph. 45, 123–137 (2015). PubMed
Forsythe J. G., et al. , Ester-mediated amide bond formation driven by wet-dry cycles: A possible path to polypeptides on the prebiotic earth. Angew. Chem. Int. Ed. Engl. 54, 9871–9875 (2015). PubMed PMC
Prebiotic oligomerization and self-assembly of structurally diverse xenobiological monomers
The Future of Origin of Life Research: Bridging Decades-Old Divisions