Prebiotic oligomerization and self-assembly of structurally diverse xenobiological monomers
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33067516
PubMed Central
PMC7567815
DOI
10.1038/s41598-020-74223-5
PII: 10.1038/s41598-020-74223-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Prebiotic chemists often study how modern biopolymers, e.g., peptides and nucleic acids, could have originated in the primitive environment, though most contemporary biomonomers don't spontaneously oligomerize under mild conditions without activation or catalysis. However, life may not have originated using the same monomeric components that it does presently. There may be numerous non-biological (or "xenobiological") monomer types that were prebiotically abundant and capable of facile oligomerization and self-assembly. Many modern biopolymers degrade abiotically preferentially via processes which produce thermodynamically stable ring structures, e.g. diketopiperazines in the case of proteins and 2', 3'-cyclic nucleotide monophosphates in the case of RNA. This weakness is overcome in modern biological systems by kinetic control, but this need not have been the case for primitive systems. We explored here the oligomerization of a structurally diverse set of prebiotically plausible xenobiological monomers, which can hydrolytically interconvert between cyclic and acyclic forms, alone or in the presence of glycine under moderate temperature drying conditions. These monomers included various lactones, lactams and a thiolactone, which varied markedly in their stability, propensity to oligomerize and apparent modes of initiation, and the oligomeric products of some of these formed self-organized microscopic structures which may be relevant to protocell formation.
Blue Marble Space Institute for Science 1001 4th Ave Suite 3201 Seattle WA 98154 USA
Institute for Advanced Study 1 Einstein Drive Princeton NJ 08540 USA
Zobrazit více v PubMed
Oparin AI. Proischogdenie zhizni. Moscow: Moscovsky Robotchii; 1924.
Haldane, J. B. S. The Origin of Life. The Rationalist Annual 3–10 (1929).
Miller SL, Orgel LE. The Origins of Life on the Earth. Upper Saddle River: Prentice-Hall; 1974.
Lowe CU, Rees MW, Markham R. Synthesis of complex organic compounds from simple precursors: Formation of amino-acids, amino-acid polymers, fatty acids and purines from ammonium cyanide. Nature. 1963;199:219–222. doi: 10.1038/199219a0. PubMed DOI
Ferris JP, Joshi PC, Edelson EH, Lawless JG. HCN: A plausible source of purines, pyrimidines and amino acids on the primitive earth. J. Mol. Evol. 1978;11:293–311. doi: 10.1007/BF01733839. PubMed DOI
Orgel LE. The origin of life - a review of facts and speculations. Trends Biochem. Sci. 1998;23:491–495. doi: 10.1016/S0968-0004(98)01300-0. PubMed DOI
Bernstein M. Prebiotic materials from on and off the early Earth. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006;361:1689–1702. doi: 10.1098/rstb.2006.1913. PubMed DOI PMC
Cleaves HJ, Lazcano A. The origin of biomolecules. In: Zaikowski L, Friedrich JM, Seidel SR, editors. Chemical Evolution II: From Origins of Life to Modern Society. Oxford: Oxford University Press; 2009. pp. 17–43.
Brack A. From interstellar amino acids to prebiotic catalytic peptides: A review. Chem. Biodivers. 2007;4:665–679. doi: 10.1002/cbdv.200790057. PubMed DOI
Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015;7:301. doi: 10.1038/nchem.2202. PubMed DOI PMC
Schwartz AW, Bakker CG. Was adenine the first purine? Science. 1989;245:1102–1104. doi: 10.1126/science.11538344. PubMed DOI
Johnson AP, et al. The Miller volcanic spark discharge experiment. Science. 2008;322:404. doi: 10.1126/science.1161527. PubMed DOI
Cleaves HJ. Prebiotic chemistry: What we know, what we don’t. Evol. Educ. Outreach. 2012;5:342–360. doi: 10.1007/s12052-012-0443-9. DOI
Schwartz AW. Intractable mixtures and the origin of life. Chem. Biodivers. 2007;4:656–664. doi: 10.1002/cbdv.200790056. PubMed DOI
Schmitt-Kopplin P, et al. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. 2010;107:2763–2768. doi: 10.1073/pnas.0912157107. PubMed DOI PMC
Guttenberg N, Virgo N, Chandru K, Scharf C, Mamajanov I. Bulk measurements of messy chemistries are needed for a theory of the origins of life. Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci. 2017;375:2. PubMed PMC
Segré D, Ben-Eli D, Lancet D. Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl. Acad. Sci. 2000;97:4112–4117. doi: 10.1073/pnas.97.8.4112. PubMed DOI PMC
Hunding A, et al. Compositional complementarity and prebiotic ecology in the origin of life. BioEssays. 2006;28:399–412. doi: 10.1002/bies.20389. PubMed DOI
Shapiro R. Small molecule interactions were central to the origin of life. Q. Rev. Biol. 2006;81:105–125. doi: 10.1086/506024. PubMed DOI
Kuriyan J, Konforti B, Wemmer D. The Molecules of Life: Physical and Chemical Principles. New York: Garland Science; 2012.
Dunn IS. Searching for molecular solutions: empirical discovery and its future. New York: John Wiley & Sons; 2010.
Ross DS, Deamer D. Dry/wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis. Life. 2016;6:2. doi: 10.3390/life6030028. PubMed DOI PMC
Imai E, Honda H, Hatori K, Brack A, Matsuno K. Elongation of oligopeptides in a simulated submarine hydrothermal system. Science. 1999;283:831–833. doi: 10.1126/science.283.5403.831. PubMed DOI
Cleaves HJ, Aubrey AD, Bada JL. An evaluation of the critical parameters for abiotic peptide synthesis in submarine hydrothermal systems. Orig. Life Evol. Biosph. 2009;39:109–126. doi: 10.1007/s11084-008-9154-1. PubMed DOI
Schneider-Bernloehr H, Lohrmann R, Orgel LE, Sulston J, Weimann BJ. Partial resolution of DL-adenosine by template synthesis. Science. 1968;162:809–810. doi: 10.1126/science.162.3855.809. PubMed DOI
Weimann BJ, Lohrmann R, Orgel LE, Schneider-Bernloehr H, Sulston JE. Template-directed synthesis with adenosine-5’-phosphorimidazolide. Science. 1968;161:387. doi: 10.1126/science.161.3839.387. PubMed DOI
Fox SW, Harada K. Thermal copolymerization of amino acids to a product resembling protein. Science. 1958;128:1214. doi: 10.1126/science.128.3333.1214. PubMed DOI
Ferris JP, Hill AR, Jr, Liu R, Orgel LE. Synthesis of long prebiotic oligomers on mineral surfaces. Nature. 1996;381:59–61. doi: 10.1038/381059a0. PubMed DOI
Surman AJ, et al. Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions. Proc. Natl. Acad. Sci. 2019;116:5387–5392. doi: 10.1073/pnas.1813987116. PubMed DOI PMC
Campbell TD, et al. Prebiotic condensation through wet–dry cycling regulated by deliquescence. Nat. Commun. 2019;10:4508. doi: 10.1038/s41467-019-11834-1. PubMed DOI PMC
Meggy AB. The free energy of formation of the amide bond in polyamides. J. Appl. Chem. 1954;4:154–159. doi: 10.1002/jctb.5010040402. DOI
Frey PA, Arabshahi A. Standard free energy change for the hydrolysis of the alpha, beta-phosphoanhydride bridge in ATP. Biochemistry. 1995;34:11307–11310. doi: 10.1021/bi00036a001. PubMed DOI
Vallentyne JR. Biogeochemistry of organic matter—II Thermal reaction kinetics and transformation products of amino compounds. Geochim. Cosmochim. Acta. 1964;28:157–188. doi: 10.1016/0016-7037(64)90147-4. DOI
White RH. Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 degrees C. Nature. 1984;310:430–432. doi: 10.1038/310430a0. PubMed DOI
Cleaves HJ, II, Chalmers JH. Extremophiles may be irrelevant to the origin of life. Astrobiology. 2004;4:1–9. doi: 10.1089/153110704773600195. PubMed DOI
Hall HK. Structural effects on the polymerization of lactams. J. Am. Chem. Soc. 1958;80:6404–6409. doi: 10.1021/ja01556a059. DOI
Hall HK, Schneider AK. Polymerization of cyclic esters, urethans, ureas and imides. J. Am. Chem. Soc. 1958;80:6409–6412. doi: 10.1021/ja01556a060. DOI
Li S, Vert M. Biodegradation of Aliphatic Polyesters. In: Scott G, editor. Degradable Polymers: Principles and Applications. Berlin: Springer; 2002. pp. 71–131.
Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem. Rev. 2004;104:6147–6176. doi: 10.1021/cr040002s. PubMed DOI
Verlander MS, Lohrmann R, Orgel LE. Catalysts for the self-polymerization of adenosine cyclic 2’, 3'-phosphate. J. Mol. Evol. 1973;2:303–316. doi: 10.1007/BF01654098. PubMed DOI
Verlander MS, Orgel LE. Analysis of high molecular weight material from the polymerization of adenosine cyclic 2’, 3'-phosphate. J. Mol. Evol. 1974;3:115–120. doi: 10.1007/BF01796557. PubMed DOI
Sawai H, Lohrmann R, Orgel LE. Prebiotic peptide-formation in the solid state. II. Reaction of glycine with adenosine 5’-triphosphate and P1, P2-diadenosine-pyrophosphate. J. Mol. Evol. 1975;6:165–184. doi: 10.1007/BF01732354. PubMed DOI
Chandru K, Mamajanov I, Cleaves HJ, 2nd, Jia TZ. Polyesters as a model system for building primitive biologies from non-biological prebiotic chemistry. Life. 2020;10:1–6. doi: 10.3390/life10010006. PubMed DOI PMC
Joyce GF, Schwartz AW, Miller SL, Orgel LE. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl. Acad. Sci. USA. 1987;84:4398–4402. doi: 10.1073/pnas.84.13.4398. PubMed DOI PMC
Hud NV, Cafferty BJ, Krishnamurthy R, Williams LD. The origin of RNA and ‘my grandfather’s axe’. Chem. Biol. 2013;20:466–474. doi: 10.1016/j.chembiol.2013.03.012. PubMed DOI
Nelson KE, Levy M, Miller SL. Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc. Natl. Acad. Sci. USA. 2000;97:3868–3871. doi: 10.1073/pnas.97.8.3868. PubMed DOI PMC
Egholm M, Buchardt O, Nielsen PE, Berg RH. Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J. Am. Chem. Soc. 1992;114:1895–1897. doi: 10.1021/ja00031a062. DOI
Nelson KE. The Prebiotic Synthesis of the Components of Peptide Nucleic Acid. San Diego: University of California; 1998.
Brunelle DJ. Ring-Opening Polymerization. Oxford: Oxford University Press; 1993.
Corbett PT, et al. Dynamic combinatorial chemistry. Chem. Rev. 2006;106:3652–3711. doi: 10.1021/cr020452p. PubMed DOI
Chandru K, et al. Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries. Commun. Chem. 2018;1:30. doi: 10.1038/s42004-018-0031-1. DOI
Ellis GP. The Maillard Reaction. In: Wolfrom ML, editor. Advances in Carbohydrate Chemistry. New York: Academic Press; 1959. pp. 63–134. PubMed
Lavado N, et al. Prebiotic-like condensations of cyanamide and glyoxal: Revisiting intractable biotars. Chem. Eur. J. 2016;22:13632–13642. doi: 10.1002/chem.201601999. PubMed DOI
Forsythe JG, et al. Ester-mediated amide bond formation driven by wet–dry cycles: A possible path to polypeptides on the prebiotic earth. Angew. Chem. Int. Ed Engl. 2015;54:9871–9875. doi: 10.1002/anie.201503792. PubMed DOI PMC
Compton RG, Bamford CH, Tipper CFH. Ester Formation and Hydrolysis and Related Reactions. Amsterdam: Elsevier; 1972.
Szostak JW, Bartel DP, Luisi PL. Synthesizing life. Nature. 2001;409:387–390. doi: 10.1038/35053176. PubMed DOI
Mann S. Systems of creation: The emergence of life from nonliving matter. Acc. Chem. Res. 2012;45:2131–2141. doi: 10.1021/ar200281t. PubMed DOI
Jia TZ, et al. Membraneless polyester microdroplets as primordial compartments at the origins of life. Proc. Natl. Acad. Sci. 2019;116:15830–15835. doi: 10.1073/pnas.1902336116. PubMed DOI PMC
Mariscal C, et al. Hidden concepts in the history and philosophy of origins-of-life studies: A workshop report. Origin Life Evol. Biospheres. 2019;49:111–145. doi: 10.1007/s11084-019-09580-x. PubMed DOI
Preiner M, et al. The future of origin of life research: bridging decades-old divisions. Life. 2020;10:2. doi: 10.3390/life10030020. PubMed DOI PMC
Rich, A. In Chemical Evolution and the Origin of Life (eds. Buvet, R., Ponnamperuma, C.) (1971)
Peltzer ET, Bada JL, Schlesinger G, Miller SL. The chemical conditions on the parent body of the Murchison meteorite: Some conclusions based on amino, hydroxy and dicarboxylic acids. Adv. Space Res. 1984;4:69–74. doi: 10.1016/0273-1177(84)90546-5. PubMed DOI
Miller, S. L. & Van Trump, J. E. The Strecker Synthesis in the Primitive Ocean. in Origin of Life (ed. Wolman, Y.) 135–141 (Dordrecht, 1981).
Peltzer ET, Bada JL. α-Hydroxycarboxylic acids in the Murchison meteorite. Nature. 1978;272:443–444. doi: 10.1038/272443a0. DOI
Pizzarello S, Wang Y, Chaban GM. A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites. Geochim. Cosmochim. Acta. 2010;74:6206–6217. doi: 10.1016/j.gca.2010.08.013. DOI
Parker ET, Cleaves HJ, Bada JL. Quantitation of α-hydroxy acids in complex prebiotic mixtures via liquid chromatography/tandem mass spectrometry. Mass Spectrometry. 2016;2:2. PubMed
Cooper GW, Cronin JR. Linear and cyclic aliphatic carboxamides of the Murchison meteorite: Hydrolyzable derivatives of amino acids and other carboxylic acids. Geochim. Cosmochim. Acta. 1995;59:1003–1015. doi: 10.1016/0016-7037(95)00018-6. PubMed DOI
Martins Z. The nitrogen heterocycle content of meteorites and their significance for the origin of life. Life. 2018;8:2. doi: 10.3390/life8030028. PubMed DOI PMC
Parker ET, et al. Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc. Natl. Acad. Sci. 2011;108:5526. doi: 10.1073/pnas.1019191108. PubMed DOI PMC
Cleaves HJ, II, et al. Amino acids generated from hydrated titan tholins: comparison with Miller–Urey electric discharge products. Icarus. 2014;237:182–189. doi: 10.1016/j.icarus.2014.04.042. DOI
Rodriguez-Garcia M, et al. Formation of oligopeptides in high yield under simple programmable conditions. Nat. Commun. 2015;6:8385. doi: 10.1038/ncomms9385. PubMed DOI PMC
Chandru K, Obayashi Y, Kaneko T, Kobayashi K. Formation of amino acid condensates partly having peptide bonds in a simulated submarine hydrothermal environment. Viva Origino. 2014;41:24–28.
Killops S, Killops V. Introduction to Organic Geochemistry. Hoboken: Blackwell Publishing Ltd.; 2004.
Labadie M, Cohere G, Brechenmacher C. Recherches sur l’évolution pré-biologique. II Etude morphologique des microsphérules obtenues à partir du cyanure d'ammonium. C. r. Séanc. Soc. Biol. 1967;161:1689–1693. PubMed
Folsome CE, Allen RD, Ichinose NK. Organic microstructures as products of Miller-Urey electrical discharges. Precambrian Res. 1975;2:263–275. doi: 10.1016/0301-9268(75)90012-1. DOI
Surman AJ, et al. Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions. Proc. Natl. Acad. Sci. USA. 2019;116:5387–5392. doi: 10.1073/pnas.1813987116. PubMed DOI PMC
Cleaves HJ, Butch C, Burger PB, Goodwin J, Meringer M. One among millions: The chemical space of nucleic acid-like molecules. J. Chem. Inf. Model. 2019;59:4266–4277. doi: 10.1021/acs.jcim.9b00632. PubMed DOI
Cleaves HJ, James Cleaves H, Bada JL. The Prebiotic Chemistry of Alternative Nucleic Acids. Dordrecht: Genesis-In Beginning. Springer; 2012. pp. 3–33.
Teichert JS, Kruse FM, Trapp O. Direct prebiotic pathway to DNA nucleosides. Angew. Chem. Int. Ed. 2019;58:9944–9947. doi: 10.1002/anie.201903400. PubMed DOI
Rodriguez LE, House CH, Smith KE, Roberts MR, Callahan MP. Nitrogen heterocycles form peptide nucleic acid precursors in complex prebiotic mixtures. Sci. Rep. 2019;9:9281. doi: 10.1038/s41598-019-45310-z. PubMed DOI PMC
Chandru K, Imai E, Kaneko T, Obayashi Y, Kobayashi K. Survivability and abiotic reactions of selected amino acids in different hydrothermal system simulators. Origin. Life Evol. Biospheres. 2013;43:99–108. doi: 10.1007/s11084-013-9330-9. PubMed DOI
Mungi CV, Bapat NV, Hongo Y, Rajamani S. Formation of abasic oligomers in nonenzymatic polymerization of canonical nucleotides. Life. 2019;9:2. doi: 10.3390/life9030057. PubMed DOI PMC
Mamajanov I, Cody GD. Protoenzymes: The case of hyperbranched polyesters. Philos. Trans. R. Soc. Lond. A. 2017;375:20160357. PubMed PMC
Pross A. What is Life? How chemistry becomes biology. Oxford: Oxford University Press; 2012. p. 256.
Pascal R. Kinetic barriers and the self-organization of life. Isr. J. Chem. 2015;55:865–874. doi: 10.1002/ijch.201400193. DOI
Strohalm M, Hassman M, Košata B, Kodíček M. mMass data miner: An open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spectrom. 2008;22:905–908. doi: 10.1002/rcm.3444. PubMed DOI
Strohalm M, Kavan D, Novák P, Volný M, Havlícek V. mMass 3: A cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 2010;82:4648–4651. doi: 10.1021/ac100818g. PubMed DOI
Niedermeyer THJ, Strohalm M. mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLoS ONE. 2012;7:e44913. doi: 10.1371/journal.pone.0044913. PubMed DOI PMC