Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
JP18K14354
Japan Society for the Promotion of Science
JP17K01943
Japan Society for the Promotion of Science
AB311021
Japan Astrobiology Center
Programme Exploration France
French Embassy in Japan
DPP-2018-004
Research Development Fund UKM
CZ 02.2.69/0.0/0.0/16_027/0008351
European Structural and Investment Funds Operational Programme "Research, Development and Education"-funded project "ChemJets"
PubMed
31963928
PubMed Central
PMC7175156
DOI
10.3390/life10010006
PII: life10010006
Knihovny.cz E-zdroje
- Klíčová slova
- Origins of Life, Polyesters, non-biomolecules, prebiotic chemistry, protocells, wet-dry cycles,
- Publikační typ
- časopisecké články MeSH
A variety of organic chemicals were likely available on prebiotic Earth. These derived from diverse processes including atmospheric and geochemical synthesis and extraterrestrial input, and were delivered to environments including oceans, lakes, and subaerial hot springs. Prebiotic chemistry generates both molecules used by modern organisms, such as proteinaceous amino acids, as well as many molecule types not used in biochemistry. As prebiotic chemical diversity was likely high, and the core of biochemistry uses a rather small set of common building blocks, the majority of prebiotically available organic compounds may not have been those used in modern biochemistry. Chemical evolution was unlikely to have been able to discriminate which molecules would eventually be used in biology, and instead, interactions among compounds were governed simply by abundance and chemical reactivity. Previous work has shown that likely prebiotically available α-hydroxy acids can combinatorially polymerize into polyesters that self-assemble to create new phases which are able to compartmentalize other molecule types. The unexpectedly rich complexity of hydroxy acid chemistry and the likely enormous structural diversity of prebiotic organic chemistry suggests chemical evolution could have been heavily influenced by molecules not used in contemporary biochemistry, and that there is a considerable amount of prebiotic chemistry which remains unexplored.
Blue Marble Space Institute for Science 1001 4th Ave Suite 3201 Seattle WA 98154 USA
Center for Chemical Evolution Georgia Institute of Technology Atlanta GA 30332 USA
Zobrazit více v PubMed
Scharf C., Virgo N., Cleaves H.J., Aono M., Aubert-Kato N., Aydinoglu A., Barahona A., Barge L.M., Benner S.A., Biehl M., et al. A strategy for origins of life research. Astrobiology. 2015;15:1031–1042. doi: 10.1089/ast.2015.1113. PubMed DOI PMC
Mariscal C., Barahona A., Aubert-Kato N., Aydinoglu A.U., Bartlett S., Cárdenas M.L., Chandru K., Cleland C., Cocanougher B.T., Comfort N., et al. Hidden concepts in the history and philosophy of origins-of-life studies: A workshop report. Orig. Life Evol. Biosph. 2019;49:111–145. doi: 10.1007/s11084-019-09580-x. PubMed DOI
Walker S.I., Packard N., Cody G.D. Re-conceptualizing the origins of life. Philos. Trans. A Math. Phys. Eng. Sci. 2017;375:20160337. doi: 10.1098/rsta.2016.0337. PubMed DOI PMC
Meringer M., Cleaves H.J. Exploring astrobiology using in silico molecular structure generation. Philos. Trans. A Math. Phys. Eng. Sci. 2017;375:20160344. doi: 10.1098/rsta.2016.0344. PubMed DOI PMC
Deamer D. The role of lipid membranes in life’s origin. Life. 2017;7:5. doi: 10.3390/life7010005. PubMed DOI PMC
Higgs P.G., Lehman N. The RNA world: Molecular cooperation at the origins of life. Nat. Rev. Genet. 2015;16:7–17. doi: 10.1038/nrg3841. PubMed DOI
Smith E., Morowitz H.J. Universality in intermediary metabolism. Proc. Natl. Acad. Sci. USA. 2004;101:13168–13173. doi: 10.1073/pnas.0404922101. PubMed DOI PMC
Andras P., Andras C. The origins of life—The “protein interaction world” hypothesis: Protein interactions were the first form of self-reproducing life and nucleic acids evolved later as memory molecules. Med. Hypotheses. 2005;64:678–688. doi: 10.1016/j.mehy.2004.11.029. PubMed DOI
Brack A. The Molecular Origins of Life: Assembling Pieces of the Puzzle. Cambridge University Press; Cambridge, UK: 1998.
Pizzarello S., Shock E. The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. Cold Spring Harb. Perspect. Biol. 2010;2:a002105. doi: 10.1101/cshperspect.a002105. PubMed DOI PMC
Wolman Y., Haverland W.J., Miller S.L. Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc. Natl. Acad. Sci. USA. 1972;69:809–811. doi: 10.1073/pnas.69.4.809. PubMed DOI PMC
Schmitt-Kopplin P., Gabelica Z., Gougeon R.D., Fekete A., Kanawati B., Harir M., Gebefuegi I., Eckel G., Hertkorn N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA. 2010;107:2763–2768. doi: 10.1073/pnas.0912157107. PubMed DOI PMC
Schmitt-Kopplin P., Hemmler D., Moritz F., Gougeon R.D., Lucio M., Meringer M., Müller C., Harir M., Hertkorn N. Systems chemical analytics: Introduction to the challenges of chemical complexity analysis. Faraday Discuss. 2019;218:9–28. doi: 10.1039/C9FD00078J. PubMed DOI
Koga T., Naraoka H. A new family of extraterrestrial amino acids in the Murchison meteorite. Sci. Rep. 2017;7:636. doi: 10.1038/s41598-017-00693-9. PubMed DOI PMC
Pizzarello S., Wang Y., Chaban G.M. A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites. Geochim. Cosmochim. Acta. 2010;74:6206–6217. doi: 10.1016/j.gca.2010.08.013. DOI
Martins Z., Watson J.S., Sephton M.A., Botta O., Ehrenfreund P., Gilmour I. Free dicarboxylic and aromatic acids in the carbonaceous chondrites Murchison and Orgueil. Meteorit. Planet. Sci. 2006;41:1073–1080. doi: 10.1111/j.1945-5100.2006.tb00505.x. DOI
Martins Z. The nitrogen heterocycle content of meteorites and their significance for the origin of life. Life. 2018;8:28. doi: 10.3390/life8030028. PubMed DOI PMC
Sephton M.A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 2002;19:292–311. doi: 10.1039/b103775g. PubMed DOI
Kahana A., Schmitt-Kopplin P., Lancet D. Enceladus: First observed primordial soup could arbitrate origin-of-life debate. Astrobiology. 2019;19:1263–1278. doi: 10.1089/ast.2019.2029. PubMed DOI PMC
Wollrab E., Scherer S., Aubriet F., Carré V., Carlomagno T., Codutti L., Ott A. Chemical analysis of a “Miller-type” complex prebiotic broth: Part I: Chemical diversity, oxygen and nitrogen based polymers. Orig. Life Evol. Biosph. 2016;46:149–169. doi: 10.1007/s11084-015-9468-8. PubMed DOI
Jiang L., Dziedzic P., Spacil Z., Zhao G.-L., Nilsson L., Ilag L.L., Córdova A. Abiotic synthesis of amino acids and self-crystallization under prebiotic conditions. Sci. Rep. 2014;4:6769. doi: 10.1038/srep06769. PubMed DOI PMC
Amend J.P., LaRowe D.E., McCollom T.M., Shock E.L. The energetics of organic synthesis inside and outside the cell. Philos. Trans. R. Soc. B Biol. Sci. 2013;368:20120255. doi: 10.1098/rstb.2012.0255. PubMed DOI PMC
Parker E.T., Cleaves H.J., Bada J.L., Fernández F.M. Quantitation of α-hydroxy acids in complex prebiotic mixtures via liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2016;30:2043–2051. doi: 10.1002/rcm.7684. PubMed DOI
Guttenberg N., Virgo N., Chandru K., Scharf C., Mamajanov I. Bulk measurements of messy chemistries are needed for a theory of the origins of life. Philos. Trans. A Math. Phys. Eng. Sci. 2017;375:20160347. doi: 10.1098/rsta.2016.0347. PubMed DOI PMC
Frenkel-Pinter M., Haynes J.W., Martin C., Petrov A.S., Burcar B.T., Krishnamurthy R., Hud N.V., Leman L.J., Williams L.D. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl. Acad. Sci. USA. 2019;116:16338–16346. doi: 10.1073/pnas.1904849116. PubMed DOI PMC
Ilardo M., Bose R., Meringer M., Rasulev B., Grefenstette N., Stephenson J., Freeland S., Gillams R.J., Butch C.J., Cleaves H.J. Adaptive properties of the genetically encoded amino acid alphabet are inherited from its subsets. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-47574-x. PubMed DOI PMC
Ilardo M., Meringer M., Freeland S., Rasulev B., Cleaves H.J. Extraordinarily adaptive properties of the genetically encoded amino acids. Sci. Rep. 2015;5:9414. doi: 10.1038/srep09414. PubMed DOI PMC
Becker S., Feldmann J., Wiedemann S., Okamura H., Schneider C., Iwan K., Crisp A., Rossa M., Amatov T., Carell T. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science. 2019;366:76–82. doi: 10.1126/science.aax2747. PubMed DOI
Lancet D., Zidovetzki R., Markovitch O. Systems protobiology: Origin of life in lipid catalytic networks. J. R. Soc. Interface. 2018;15:20180159. doi: 10.1098/rsif.2018.0159. PubMed DOI PMC
Kauffman S.A. Approaches to the origin of life on Earth. Life. 2011;1:34–48. doi: 10.3390/life1010034. PubMed DOI PMC
Zhang S. Lipid-like Self-Assembling Peptides. Acc. Chem. Res. 2012;45:2142–2150. doi: 10.1021/ar300034v. PubMed DOI
Joyce G.F., Schwartz A.W., Miller S.L., Orgel L.E. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl. Acad. Sci. USA. 1987;84:4398–4402. doi: 10.1073/pnas.84.13.4398. PubMed DOI PMC
Joyce G.F. RNA Evolution and the Origins of Life. Nature. 1989;338:217–224. doi: 10.1038/338217a0. PubMed DOI
Cleaves H.J., Bada J.L. The prebiotic chemistry of alternative nucleic acids. In: Seckbach J., editor. Genesis—In the Beginning: Precursors of Life, Chemical Models and Early Biological Evolution. Springer; Dordrecht, The Netherlands: 2012. pp. 3–33.
Hud N.V., Cafferty B.J., Krishnamurthy R., Williams L.D. The origin of RNA and “my grandfather’s axe”. Chem. Biol. 2013;20:466–474. doi: 10.1016/j.chembiol.2013.03.012. PubMed DOI
Mamajanov I., Callahan M.P., Dworkin J.P., Cody G.D. Prebiotic alternatives to proteins: Structure and function of hyperbranched polyesters. Orig. Life Evol. Biosph. 2015;45:123–137. doi: 10.1007/s11084-015-9430-9. PubMed DOI
Mamajanov I., MacDonald P.J., Ying J., Duncanson D.M., Dowdy G.R., Walker C.A., Engelhart A.E., Fernández F.M., Grover M.A., Hud N.V., et al. Ester formation and hydrolysis during wet–dry cycles: Generation of far-from-equilibrium polymers in a model prebiotic reaction. Macromolecules. 2014;47:1334–1343. doi: 10.1021/ma402256d. DOI
Chandru K., Guttenberg N., Giri C., Hongo Y., Butch C., Mamajanov I., Cleaves H.J. Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries. Commun. Chem. 2018;1:30. doi: 10.1038/s42004-018-0031-1. DOI
Mamajanov I., Cody G.D. Protoenzymes: The case of hyperbranched polyesters. Philos. Trans. A Math. Phys. Eng. Sci. 2017;375:20160357. doi: 10.1098/rsta.2016.0357. PubMed DOI PMC
Jia T.Z., Chandru K., Hongo Y., Afrin R., Usui T., Myojo K., Cleaves H.J. Membraneless polyester microdroplets as primordial compartments at the origins of life. Proc. Natl. Acad. Sci. USA. 2019;116:15830–15835. doi: 10.1073/pnas.1902336116. PubMed DOI PMC
Galbiati E., Zoppo M.D., Tieghi G., Zerbi G. Dipole-dipole interactions in simple esters and in liquid-crystal polyesters. Polymer. 1993;34:1806–1810. doi: 10.1016/0032-3861(93)90420-F. DOI
Bordo D., Argos P. The role of side-chain hydrogen bonds in the formation and stabilization of secondary structure in soluble proteins. J. Mol. Biol. 1994;243:504–519. doi: 10.1006/jmbi.1994.1676. PubMed DOI
Myers J.K., Pace C.N. Hydrogen bonding stabilizes globular proteins. Biophys. J. 1996;71:2033–2039. doi: 10.1016/S0006-3495(96)79401-8. PubMed DOI PMC
Forsythe J.G., Yu S.-S., Mamajanov I., Grover M.A., Krishnamurthy R., Fernández F.M., Hud N.V. Ester-mediated amide bond formation driven by wet-dry cycles: A possible path to polypeptides on the prebiotic Earth. Angew. Chem. Int. Ed. 2015;54:9871–9875. doi: 10.1002/anie.201503792. PubMed DOI PMC
Woese C.R. On the evolution of cells. Proc. Natl. Acad. Sci. USA. 2002;99:8742–8747. doi: 10.1073/pnas.132266999. PubMed DOI PMC
Meggy A.B. The free energy of formation of the amide bond in polyamides. J. Appl. Chem. 2007;4:154–159. doi: 10.1002/jctb.5010040402. DOI
Hulshof J., Ponnamperuma C. Prebiotic condensation reactions in an aqueous medium: A review of condensing agents. Orig. Life. 1976;7:197–224. doi: 10.1007/BF00926938. PubMed DOI
Leman L., Orgel L., Ghadiri M.R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science. 2004;306:283–286. doi: 10.1126/science.1102722. PubMed DOI
Danger G., Plasson R., Pascal R. Pathways for the formation and evolution of peptides in prebiotic environments. Chem. Soc. Rev. 2012;41:5416–5429. doi: 10.1039/c2cs35064e. PubMed DOI
Leman L.J., Huang Z.-Z., Ghadiri M.R. Peptide bond formation in water mediated by carbon disulfide. Astrobiology. 2015;15:709–716. doi: 10.1089/ast.2015.1314. PubMed DOI
Hill A.R., Jr., Böhler C., Orgel L.E. Polymerization on the rocks: Negatively-charged alpha-amino acids. Orig. Life Evol. Biosph. 1998;28:235–243. doi: 10.1023/A:1006572112311. PubMed DOI
Liu R., Orgel L.E. Polymerization on the rocks: Beta-amino acids and arginine. Orig. Life Evol. Biosph. 1998;28:245–257. doi: 10.1023/A:1006576213220. PubMed DOI
Rodriguez-Garcia M., Surman A.J., Cooper G.J.T., Suárez-Marina I., Hosni Z., Lee M.P., Cronin L. Formation of oligopeptides in high yield under simple programmable conditions. Nat. Commun. 2015;6:8385. doi: 10.1038/ncomms9385. PubMed DOI PMC
Compton R.G., Bamford C.H., Tipper† C.F.H. Ester Formation and Hydrolysis and Related Reactions. Elsevier; Amsterdam, The Netherlands: 1972.
Orgel L.E. Some consequences of the RNA world hypothesis. Orig. Life Evol. Biosph. 2003;33:211–218. doi: 10.1023/A:1024616317965. PubMed DOI
Barge L.M., Flores E., Baum M.M., VanderVelde D.G., Russell M.J. Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. Proc. Natl. Acad. Sci. USA. 2019;116:4828–4833. doi: 10.1073/pnas.1812098116. PubMed DOI PMC
Bada J.L. New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem. Soc. Rev. 2013;42:2186–2196. doi: 10.1039/c3cs35433d. PubMed DOI
Sephton M.A. Organic matter in carbonaceous meteorites: Past, present and future research. Philos. Trans. A Math. Phys. Eng. Sci. 2005;363:2729–2742. doi: 10.1098/rsta.2005.1670. PubMed DOI
Graça J., Lamosa P. Linear and branched poly(omega-hydroxyacid) esters in plant cutins. J. Agric. Food Chem. 2010;58:9666–9674. doi: 10.1021/jf1015297. PubMed DOI
Poirier Y., Nawrath C., Somerville C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology. 1995;13:142–150. doi: 10.1038/nbt0295-142. PubMed DOI
Das S., Lengweiler U.D., Seebach D., Reusch R.N. Proof for a nonproteinaceous calcium-selective channel in Escherichia coli by total synthesis from (R)-3-hydroxybutanoic acid and inorganic polyphosphate. Proc. Natl. Acad. Sci. USA. 1997;94:9075–9079. doi: 10.1073/pnas.94.17.9075. PubMed DOI PMC
Mamajanov I. Wet-dry cycling delays the gelation of hyperbranched polyesters: Implications to the origin of life. Life. 2019;9:56. doi: 10.3390/life9030056. PubMed DOI PMC
Dora Tang T.-Y., Rohaida Che Hak C., Thompson A.J., Kuimova M.K., Williams D.S., Perriman A.W., Mann S. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 2014;6:527–533. doi: 10.1038/nchem.1921. PubMed DOI
Aumiller W.M., Jr., Pir Cakmak F., Davis B.W., Keating C.D. RNA-based coacervates as a model for membraneless organelles: Formation, properties, and interfacial liposome assembly. Langmuir. 2016;32:10042–10053. doi: 10.1021/acs.langmuir.6b02499. PubMed DOI
Jia T.Z., Hentrich C., Szostak J.W. Rapid RNA exchange in aqueous two-phase system and coacervate droplets. Orig. Life Evol. Biosph. 2014;44:1–12. doi: 10.1007/s11084-014-9355-8. PubMed DOI PMC
Tsai W.-T. Environmental risk assessment of hydrofluoropolyethers (HFPEs) J. Hazard. Mater. 2007;139:185–192. doi: 10.1016/j.jhazmat.2006.10.025. PubMed DOI
Soares C.M., Teixeira V.H., Baptista A.M. Protein structure and dynamics in nonaqueous solvents: Insights from molecular dynamics simulation studies. Biophys. J. 2003;84:1628–1641. doi: 10.1016/S0006-3495(03)74972-8. PubMed DOI PMC
Yasuda S., Oshima H., Kinoshita M. Structural stability of proteins in aqueous and nonpolar environments. J. Chem. Phys. 2012;137:135103. doi: 10.1063/1.4755755. PubMed DOI
Mayer C., Schreiber U., Dávila M.J. Periodic vesicle formation in tectonic fault zones—An ideal scenario for molecular evolution. Orig. Life Evol. Biosph. 2015;45:139–148. doi: 10.1007/s11084-015-9411-z. PubMed DOI PMC
Mayer C., Schreiber U., Dávila M.J. Selection of prebiotic molecules in amphiphilic environments. Life. 2017;7:3. doi: 10.3390/life7010003. PubMed DOI PMC
Frederix P.W.J., Scott G.G., Abul-Haija Y.M., Kalafatovic D., Pappas C.G., Javid N., Hunt N.T., Ulijn R.V., Tuttle T. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 2014;7:30–37. doi: 10.1038/nchem.2122. PubMed DOI
Prywes N., Blain J.C., Del Frate F., Szostak J.W. Nonenzymatic copying of RNA templates containing all four letters is catalyzed by activated oligonucleotides. Elife. 2016;5:e17756. doi: 10.7554/eLife.17756. PubMed DOI PMC
Sosson M., Richert C. Enzyme-free genetic copying of DNA and RNA sequences. Beilstein J. Org. Chem. 2018;14:603–617. doi: 10.3762/bjoc.14.47. PubMed DOI PMC
Szostak J.W. The eightfold path to non-enzymatic RNA replication. J. Syst. Chem. 2012;3:2. doi: 10.1186/1759-2208-3-2. DOI
Hanczyc M.M., Monnard P.-A. The origin of life and the potential role of soaps. Lipid Technol. 2016;28:88–92. doi: 10.1002/lite.201600027. DOI
Dehsorkhi A., Castelletto V., Hamley I.W. Self-assembling amphiphilic peptides. J. Pept. Sci. 2014;20:453–467. doi: 10.1002/psc.2633. PubMed DOI PMC
Di Leo S., Todisco M., Bellini T., Fraccia T.P. Phase separations, liquid crystal ordering and molecular partitioning in mixtures of PEG and DNA oligomers. Liq. Cryst. 2018;45:2306–2318. doi: 10.1080/02678292.2018.1519123. DOI
Cakmak F.P., Keating C.D. Combining catalytic microparticles with droplets formed by phase coexistence: Adsorption and activity of natural clays at the aqueous/aqueous interface. Sci. Rep. 2017;7:3215. doi: 10.1038/s41598-017-03033-z. PubMed DOI PMC
Zwicker D., Seyboldt R., Weber C.A., Hyman A.A., Jülicher F. Growth and division of active droplets provides a model for protocells. Nat. Phys. 2016;13:408–413. doi: 10.1038/nphys3984. DOI
Cronin J.R., Pizzarello S., Epstein S., Krishnamurthy R.V. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta. 1993;57:4745–4752. doi: 10.1016/0016-7037(93)90197-5. PubMed DOI
Bhowmik S., Krishnamurthy R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nat. Chem. 2019;11:1009–1018. doi: 10.1038/s41557-019-0322-x. PubMed DOI PMC
Wong J.T.-F., Tze-Fei Wong J. Coevolution theory of the genetic code at age thirty. BioEssays. 2005;27:416–425. doi: 10.1002/bies.20208. PubMed DOI
Granold M., Hajieva P., Toşa M.I., Irimie F.-D., Moosmann B. Modern diversification of the amino acid repertoire driven by oxygen. Proc. Natl. Acad. Sci. USA. 2018;115:41–46. doi: 10.1073/pnas.1717100115. PubMed DOI PMC
Kim K.M., Qin T., Jiang Y.-Y., Chen L.-L., Xiong M., Caetano-Anollés D., Zhang H.-Y., Caetano-Anollés G. Protein domain structure uncovers the origin of aerobic metabolism and the rise of planetary oxygen. Structure. 2012;20:67–76. doi: 10.1016/j.str.2011.11.003. PubMed DOI
Fahnestock S., Neumann H., Rich A. Assay of ester and polyester formation by the ribosomal peptidyltransferase. Methods Enzym. 1974;30:489–497. PubMed
Benner S.A., Ellington A.D., Tauer A. Modern metabolism as a palimpsest of the RNA world. Proc. Natl. Acad. Sci. USA. 1989;86:7054–7058. doi: 10.1073/pnas.86.18.7054. PubMed DOI PMC
Javaux E.J. Challenges in evidencing the earliest traces of life. Nature. 2019;572:451–460. doi: 10.1038/s41586-019-1436-4. PubMed DOI
Mayr E. This is Biology: The Science of the Living World. Harvard University Press; Cambridge, MA, USA: 1997.
Hazen R.M., Filley T.R., Goodfriend G.A. Selective Adsorption of L- and D-Amino Acids on Calcite: Implications for Biochemical Homochirality. Proc. Natl. Acad. Sci. USA. 2001;98:5487–5490. doi: 10.1073/pnas.101085998. PubMed DOI PMC
Halevy I., Bachan A. The geologic history of seawater pH. Science. 2017;355:1069–1071. doi: 10.1126/science.aal4151. PubMed DOI
Khersonsky O., Tawfik D.S. Enzyme promiscuity: A mechanistic and evolutionary perspective. Annu. Rev. Biochem. 2010;79:471–505. PubMed
Carbonell P., Lecointre G., Faulon J.-L. Origins of specificity and promiscuity in metabolic networks. J. Biol. Chem. 2011;286:43994–44004. doi: 10.1074/jbc.M111.274050. PubMed DOI PMC
Reek J.N.H., Otto S. Dynamic Combinatorial Chemistry. John Wiley & Sons; Hoboken, NJ, USA: 2010.
Tena-Solsona M., Wanzke C., Riess B., Bausch A.R., Boekhoven J. Self-selection of dissipative assemblies driven by primitive chemical reaction networks. Nat. Commun. 2018;9:2044. doi: 10.1038/s41467-018-04488-y. PubMed DOI PMC
Pappas C.G., Shafi R., Sasselli I.R., Siccardi H., Wang T., Narang V., Abzalimov R., Wijerathne N., Ulijn R.V. Dynamic peptide libraries for the discovery of supramolecular nanomaterials. Nat. Nanotechnol. 2016;11:960–967. doi: 10.1038/nnano.2016.169. PubMed DOI
Surman A.J., Rodriguez-Garcia M., Abul-Haija Y.M., Cooper G.J.T., Gromski P.S., Turk-MacLeod R., Mullin M., Mathis C., Walker S.I., Cronin L. Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions. Proc. Natl. Acad. Sci. USA. 2019;116:5387–5392. doi: 10.1073/pnas.1813987116. PubMed DOI PMC
Vincent L., Berg M., Krismer M., Saghafi S.S., Cosby J., Sankari T., Vetsigian K., Cleaves H.J., Baum D.A. Chemical ecosystem selection on mineral surfaces reveals long-term dynamics consistent with the spontaneous emergence of mutual catalysis. Life. 2019;9:80. doi: 10.3390/life9040080. PubMed DOI PMC