Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry

. 2020 Jan 19 ; 10 (1) : . [epub] 20200119

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31963928

Grantová podpora
JP18K14354 Japan Society for the Promotion of Science
JP17K01943 Japan Society for the Promotion of Science
AB311021 Japan Astrobiology Center
Programme Exploration France French Embassy in Japan
DPP-2018-004 Research Development Fund UKM
CZ 02.2.69/0.0/0.0/16_027/0008351 European Structural and Investment Funds Operational Programme "Research, Development and Education"-funded project "ChemJets"

A variety of organic chemicals were likely available on prebiotic Earth. These derived from diverse processes including atmospheric and geochemical synthesis and extraterrestrial input, and were delivered to environments including oceans, lakes, and subaerial hot springs. Prebiotic chemistry generates both molecules used by modern organisms, such as proteinaceous amino acids, as well as many molecule types not used in biochemistry. As prebiotic chemical diversity was likely high, and the core of biochemistry uses a rather small set of common building blocks, the majority of prebiotically available organic compounds may not have been those used in modern biochemistry. Chemical evolution was unlikely to have been able to discriminate which molecules would eventually be used in biology, and instead, interactions among compounds were governed simply by abundance and chemical reactivity. Previous work has shown that likely prebiotically available α-hydroxy acids can combinatorially polymerize into polyesters that self-assemble to create new phases which are able to compartmentalize other molecule types. The unexpectedly rich complexity of hydroxy acid chemistry and the likely enormous structural diversity of prebiotic organic chemistry suggests chemical evolution could have been heavily influenced by molecules not used in contemporary biochemistry, and that there is a considerable amount of prebiotic chemistry which remains unexplored.

Zobrazit více v PubMed

Scharf C., Virgo N., Cleaves H.J., Aono M., Aubert-Kato N., Aydinoglu A., Barahona A., Barge L.M., Benner S.A., Biehl M., et al. A strategy for origins of life research. Astrobiology. 2015;15:1031–1042. doi: 10.1089/ast.2015.1113. PubMed DOI PMC

Mariscal C., Barahona A., Aubert-Kato N., Aydinoglu A.U., Bartlett S., Cárdenas M.L., Chandru K., Cleland C., Cocanougher B.T., Comfort N., et al. Hidden concepts in the history and philosophy of origins-of-life studies: A workshop report. Orig. Life Evol. Biosph. 2019;49:111–145. doi: 10.1007/s11084-019-09580-x. PubMed DOI

Walker S.I., Packard N., Cody G.D. Re-conceptualizing the origins of life. Philos. Trans. A Math. Phys. Eng. Sci. 2017;375:20160337. doi: 10.1098/rsta.2016.0337. PubMed DOI PMC

Meringer M., Cleaves H.J. Exploring astrobiology using in silico molecular structure generation. Philos. Trans. A Math. Phys. Eng. Sci. 2017;375:20160344. doi: 10.1098/rsta.2016.0344. PubMed DOI PMC

Deamer D. The role of lipid membranes in life’s origin. Life. 2017;7:5. doi: 10.3390/life7010005. PubMed DOI PMC

Higgs P.G., Lehman N. The RNA world: Molecular cooperation at the origins of life. Nat. Rev. Genet. 2015;16:7–17. doi: 10.1038/nrg3841. PubMed DOI

Smith E., Morowitz H.J. Universality in intermediary metabolism. Proc. Natl. Acad. Sci. USA. 2004;101:13168–13173. doi: 10.1073/pnas.0404922101. PubMed DOI PMC

Andras P., Andras C. The origins of life—The “protein interaction world” hypothesis: Protein interactions were the first form of self-reproducing life and nucleic acids evolved later as memory molecules. Med. Hypotheses. 2005;64:678–688. doi: 10.1016/j.mehy.2004.11.029. PubMed DOI

Brack A. The Molecular Origins of Life: Assembling Pieces of the Puzzle. Cambridge University Press; Cambridge, UK: 1998.

Pizzarello S., Shock E. The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. Cold Spring Harb. Perspect. Biol. 2010;2:a002105. doi: 10.1101/cshperspect.a002105. PubMed DOI PMC

Wolman Y., Haverland W.J., Miller S.L. Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc. Natl. Acad. Sci. USA. 1972;69:809–811. doi: 10.1073/pnas.69.4.809. PubMed DOI PMC

Schmitt-Kopplin P., Gabelica Z., Gougeon R.D., Fekete A., Kanawati B., Harir M., Gebefuegi I., Eckel G., Hertkorn N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA. 2010;107:2763–2768. doi: 10.1073/pnas.0912157107. PubMed DOI PMC

Schmitt-Kopplin P., Hemmler D., Moritz F., Gougeon R.D., Lucio M., Meringer M., Müller C., Harir M., Hertkorn N. Systems chemical analytics: Introduction to the challenges of chemical complexity analysis. Faraday Discuss. 2019;218:9–28. doi: 10.1039/C9FD00078J. PubMed DOI

Koga T., Naraoka H. A new family of extraterrestrial amino acids in the Murchison meteorite. Sci. Rep. 2017;7:636. doi: 10.1038/s41598-017-00693-9. PubMed DOI PMC

Pizzarello S., Wang Y., Chaban G.M. A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites. Geochim. Cosmochim. Acta. 2010;74:6206–6217. doi: 10.1016/j.gca.2010.08.013. DOI

Martins Z., Watson J.S., Sephton M.A., Botta O., Ehrenfreund P., Gilmour I. Free dicarboxylic and aromatic acids in the carbonaceous chondrites Murchison and Orgueil. Meteorit. Planet. Sci. 2006;41:1073–1080. doi: 10.1111/j.1945-5100.2006.tb00505.x. DOI

Martins Z. The nitrogen heterocycle content of meteorites and their significance for the origin of life. Life. 2018;8:28. doi: 10.3390/life8030028. PubMed DOI PMC

Sephton M.A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 2002;19:292–311. doi: 10.1039/b103775g. PubMed DOI

Kahana A., Schmitt-Kopplin P., Lancet D. Enceladus: First observed primordial soup could arbitrate origin-of-life debate. Astrobiology. 2019;19:1263–1278. doi: 10.1089/ast.2019.2029. PubMed DOI PMC

Wollrab E., Scherer S., Aubriet F., Carré V., Carlomagno T., Codutti L., Ott A. Chemical analysis of a “Miller-type” complex prebiotic broth: Part I: Chemical diversity, oxygen and nitrogen based polymers. Orig. Life Evol. Biosph. 2016;46:149–169. doi: 10.1007/s11084-015-9468-8. PubMed DOI

Jiang L., Dziedzic P., Spacil Z., Zhao G.-L., Nilsson L., Ilag L.L., Córdova A. Abiotic synthesis of amino acids and self-crystallization under prebiotic conditions. Sci. Rep. 2014;4:6769. doi: 10.1038/srep06769. PubMed DOI PMC

Amend J.P., LaRowe D.E., McCollom T.M., Shock E.L. The energetics of organic synthesis inside and outside the cell. Philos. Trans. R. Soc. B Biol. Sci. 2013;368:20120255. doi: 10.1098/rstb.2012.0255. PubMed DOI PMC

Parker E.T., Cleaves H.J., Bada J.L., Fernández F.M. Quantitation of α-hydroxy acids in complex prebiotic mixtures via liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2016;30:2043–2051. doi: 10.1002/rcm.7684. PubMed DOI

Guttenberg N., Virgo N., Chandru K., Scharf C., Mamajanov I. Bulk measurements of messy chemistries are needed for a theory of the origins of life. Philos. Trans. A Math. Phys. Eng. Sci. 2017;375:20160347. doi: 10.1098/rsta.2016.0347. PubMed DOI PMC

Frenkel-Pinter M., Haynes J.W., Martin C., Petrov A.S., Burcar B.T., Krishnamurthy R., Hud N.V., Leman L.J., Williams L.D. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl. Acad. Sci. USA. 2019;116:16338–16346. doi: 10.1073/pnas.1904849116. PubMed DOI PMC

Ilardo M., Bose R., Meringer M., Rasulev B., Grefenstette N., Stephenson J., Freeland S., Gillams R.J., Butch C.J., Cleaves H.J. Adaptive properties of the genetically encoded amino acid alphabet are inherited from its subsets. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-47574-x. PubMed DOI PMC

Ilardo M., Meringer M., Freeland S., Rasulev B., Cleaves H.J. Extraordinarily adaptive properties of the genetically encoded amino acids. Sci. Rep. 2015;5:9414. doi: 10.1038/srep09414. PubMed DOI PMC

Becker S., Feldmann J., Wiedemann S., Okamura H., Schneider C., Iwan K., Crisp A., Rossa M., Amatov T., Carell T. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science. 2019;366:76–82. doi: 10.1126/science.aax2747. PubMed DOI

Lancet D., Zidovetzki R., Markovitch O. Systems protobiology: Origin of life in lipid catalytic networks. J. R. Soc. Interface. 2018;15:20180159. doi: 10.1098/rsif.2018.0159. PubMed DOI PMC

Kauffman S.A. Approaches to the origin of life on Earth. Life. 2011;1:34–48. doi: 10.3390/life1010034. PubMed DOI PMC

Zhang S. Lipid-like Self-Assembling Peptides. Acc. Chem. Res. 2012;45:2142–2150. doi: 10.1021/ar300034v. PubMed DOI

Joyce G.F., Schwartz A.W., Miller S.L., Orgel L.E. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl. Acad. Sci. USA. 1987;84:4398–4402. doi: 10.1073/pnas.84.13.4398. PubMed DOI PMC

Joyce G.F. RNA Evolution and the Origins of Life. Nature. 1989;338:217–224. doi: 10.1038/338217a0. PubMed DOI

Cleaves H.J., Bada J.L. The prebiotic chemistry of alternative nucleic acids. In: Seckbach J., editor. Genesis—In the Beginning: Precursors of Life, Chemical Models and Early Biological Evolution. Springer; Dordrecht, The Netherlands: 2012. pp. 3–33.

Hud N.V., Cafferty B.J., Krishnamurthy R., Williams L.D. The origin of RNA and “my grandfather’s axe”. Chem. Biol. 2013;20:466–474. doi: 10.1016/j.chembiol.2013.03.012. PubMed DOI

Mamajanov I., Callahan M.P., Dworkin J.P., Cody G.D. Prebiotic alternatives to proteins: Structure and function of hyperbranched polyesters. Orig. Life Evol. Biosph. 2015;45:123–137. doi: 10.1007/s11084-015-9430-9. PubMed DOI

Mamajanov I., MacDonald P.J., Ying J., Duncanson D.M., Dowdy G.R., Walker C.A., Engelhart A.E., Fernández F.M., Grover M.A., Hud N.V., et al. Ester formation and hydrolysis during wet–dry cycles: Generation of far-from-equilibrium polymers in a model prebiotic reaction. Macromolecules. 2014;47:1334–1343. doi: 10.1021/ma402256d. DOI

Chandru K., Guttenberg N., Giri C., Hongo Y., Butch C., Mamajanov I., Cleaves H.J. Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries. Commun. Chem. 2018;1:30. doi: 10.1038/s42004-018-0031-1. DOI

Mamajanov I., Cody G.D. Protoenzymes: The case of hyperbranched polyesters. Philos. Trans. A Math. Phys. Eng. Sci. 2017;375:20160357. doi: 10.1098/rsta.2016.0357. PubMed DOI PMC

Jia T.Z., Chandru K., Hongo Y., Afrin R., Usui T., Myojo K., Cleaves H.J. Membraneless polyester microdroplets as primordial compartments at the origins of life. Proc. Natl. Acad. Sci. USA. 2019;116:15830–15835. doi: 10.1073/pnas.1902336116. PubMed DOI PMC

Galbiati E., Zoppo M.D., Tieghi G., Zerbi G. Dipole-dipole interactions in simple esters and in liquid-crystal polyesters. Polymer. 1993;34:1806–1810. doi: 10.1016/0032-3861(93)90420-F. DOI

Bordo D., Argos P. The role of side-chain hydrogen bonds in the formation and stabilization of secondary structure in soluble proteins. J. Mol. Biol. 1994;243:504–519. doi: 10.1006/jmbi.1994.1676. PubMed DOI

Myers J.K., Pace C.N. Hydrogen bonding stabilizes globular proteins. Biophys. J. 1996;71:2033–2039. doi: 10.1016/S0006-3495(96)79401-8. PubMed DOI PMC

Forsythe J.G., Yu S.-S., Mamajanov I., Grover M.A., Krishnamurthy R., Fernández F.M., Hud N.V. Ester-mediated amide bond formation driven by wet-dry cycles: A possible path to polypeptides on the prebiotic Earth. Angew. Chem. Int. Ed. 2015;54:9871–9875. doi: 10.1002/anie.201503792. PubMed DOI PMC

Woese C.R. On the evolution of cells. Proc. Natl. Acad. Sci. USA. 2002;99:8742–8747. doi: 10.1073/pnas.132266999. PubMed DOI PMC

Meggy A.B. The free energy of formation of the amide bond in polyamides. J. Appl. Chem. 2007;4:154–159. doi: 10.1002/jctb.5010040402. DOI

Hulshof J., Ponnamperuma C. Prebiotic condensation reactions in an aqueous medium: A review of condensing agents. Orig. Life. 1976;7:197–224. doi: 10.1007/BF00926938. PubMed DOI

Leman L., Orgel L., Ghadiri M.R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science. 2004;306:283–286. doi: 10.1126/science.1102722. PubMed DOI

Danger G., Plasson R., Pascal R. Pathways for the formation and evolution of peptides in prebiotic environments. Chem. Soc. Rev. 2012;41:5416–5429. doi: 10.1039/c2cs35064e. PubMed DOI

Leman L.J., Huang Z.-Z., Ghadiri M.R. Peptide bond formation in water mediated by carbon disulfide. Astrobiology. 2015;15:709–716. doi: 10.1089/ast.2015.1314. PubMed DOI

Hill A.R., Jr., Böhler C., Orgel L.E. Polymerization on the rocks: Negatively-charged alpha-amino acids. Orig. Life Evol. Biosph. 1998;28:235–243. doi: 10.1023/A:1006572112311. PubMed DOI

Liu R., Orgel L.E. Polymerization on the rocks: Beta-amino acids and arginine. Orig. Life Evol. Biosph. 1998;28:245–257. doi: 10.1023/A:1006576213220. PubMed DOI

Rodriguez-Garcia M., Surman A.J., Cooper G.J.T., Suárez-Marina I., Hosni Z., Lee M.P., Cronin L. Formation of oligopeptides in high yield under simple programmable conditions. Nat. Commun. 2015;6:8385. doi: 10.1038/ncomms9385. PubMed DOI PMC

Compton R.G., Bamford C.H., Tipper† C.F.H. Ester Formation and Hydrolysis and Related Reactions. Elsevier; Amsterdam, The Netherlands: 1972.

Orgel L.E. Some consequences of the RNA world hypothesis. Orig. Life Evol. Biosph. 2003;33:211–218. doi: 10.1023/A:1024616317965. PubMed DOI

Barge L.M., Flores E., Baum M.M., VanderVelde D.G., Russell M.J. Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. Proc. Natl. Acad. Sci. USA. 2019;116:4828–4833. doi: 10.1073/pnas.1812098116. PubMed DOI PMC

Bada J.L. New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem. Soc. Rev. 2013;42:2186–2196. doi: 10.1039/c3cs35433d. PubMed DOI

Sephton M.A. Organic matter in carbonaceous meteorites: Past, present and future research. Philos. Trans. A Math. Phys. Eng. Sci. 2005;363:2729–2742. doi: 10.1098/rsta.2005.1670. PubMed DOI

Graça J., Lamosa P. Linear and branched poly(omega-hydroxyacid) esters in plant cutins. J. Agric. Food Chem. 2010;58:9666–9674. doi: 10.1021/jf1015297. PubMed DOI

Poirier Y., Nawrath C., Somerville C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology. 1995;13:142–150. doi: 10.1038/nbt0295-142. PubMed DOI

Das S., Lengweiler U.D., Seebach D., Reusch R.N. Proof for a nonproteinaceous calcium-selective channel in Escherichia coli by total synthesis from (R)-3-hydroxybutanoic acid and inorganic polyphosphate. Proc. Natl. Acad. Sci. USA. 1997;94:9075–9079. doi: 10.1073/pnas.94.17.9075. PubMed DOI PMC

Mamajanov I. Wet-dry cycling delays the gelation of hyperbranched polyesters: Implications to the origin of life. Life. 2019;9:56. doi: 10.3390/life9030056. PubMed DOI PMC

Dora Tang T.-Y., Rohaida Che Hak C., Thompson A.J., Kuimova M.K., Williams D.S., Perriman A.W., Mann S. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 2014;6:527–533. doi: 10.1038/nchem.1921. PubMed DOI

Aumiller W.M., Jr., Pir Cakmak F., Davis B.W., Keating C.D. RNA-based coacervates as a model for membraneless organelles: Formation, properties, and interfacial liposome assembly. Langmuir. 2016;32:10042–10053. doi: 10.1021/acs.langmuir.6b02499. PubMed DOI

Jia T.Z., Hentrich C., Szostak J.W. Rapid RNA exchange in aqueous two-phase system and coacervate droplets. Orig. Life Evol. Biosph. 2014;44:1–12. doi: 10.1007/s11084-014-9355-8. PubMed DOI PMC

Tsai W.-T. Environmental risk assessment of hydrofluoropolyethers (HFPEs) J. Hazard. Mater. 2007;139:185–192. doi: 10.1016/j.jhazmat.2006.10.025. PubMed DOI

Soares C.M., Teixeira V.H., Baptista A.M. Protein structure and dynamics in nonaqueous solvents: Insights from molecular dynamics simulation studies. Biophys. J. 2003;84:1628–1641. doi: 10.1016/S0006-3495(03)74972-8. PubMed DOI PMC

Yasuda S., Oshima H., Kinoshita M. Structural stability of proteins in aqueous and nonpolar environments. J. Chem. Phys. 2012;137:135103. doi: 10.1063/1.4755755. PubMed DOI

Mayer C., Schreiber U., Dávila M.J. Periodic vesicle formation in tectonic fault zones—An ideal scenario for molecular evolution. Orig. Life Evol. Biosph. 2015;45:139–148. doi: 10.1007/s11084-015-9411-z. PubMed DOI PMC

Mayer C., Schreiber U., Dávila M.J. Selection of prebiotic molecules in amphiphilic environments. Life. 2017;7:3. doi: 10.3390/life7010003. PubMed DOI PMC

Frederix P.W.J., Scott G.G., Abul-Haija Y.M., Kalafatovic D., Pappas C.G., Javid N., Hunt N.T., Ulijn R.V., Tuttle T. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 2014;7:30–37. doi: 10.1038/nchem.2122. PubMed DOI

Prywes N., Blain J.C., Del Frate F., Szostak J.W. Nonenzymatic copying of RNA templates containing all four letters is catalyzed by activated oligonucleotides. Elife. 2016;5:e17756. doi: 10.7554/eLife.17756. PubMed DOI PMC

Sosson M., Richert C. Enzyme-free genetic copying of DNA and RNA sequences. Beilstein J. Org. Chem. 2018;14:603–617. doi: 10.3762/bjoc.14.47. PubMed DOI PMC

Szostak J.W. The eightfold path to non-enzymatic RNA replication. J. Syst. Chem. 2012;3:2. doi: 10.1186/1759-2208-3-2. DOI

Hanczyc M.M., Monnard P.-A. The origin of life and the potential role of soaps. Lipid Technol. 2016;28:88–92. doi: 10.1002/lite.201600027. DOI

Dehsorkhi A., Castelletto V., Hamley I.W. Self-assembling amphiphilic peptides. J. Pept. Sci. 2014;20:453–467. doi: 10.1002/psc.2633. PubMed DOI PMC

Di Leo S., Todisco M., Bellini T., Fraccia T.P. Phase separations, liquid crystal ordering and molecular partitioning in mixtures of PEG and DNA oligomers. Liq. Cryst. 2018;45:2306–2318. doi: 10.1080/02678292.2018.1519123. DOI

Cakmak F.P., Keating C.D. Combining catalytic microparticles with droplets formed by phase coexistence: Adsorption and activity of natural clays at the aqueous/aqueous interface. Sci. Rep. 2017;7:3215. doi: 10.1038/s41598-017-03033-z. PubMed DOI PMC

Zwicker D., Seyboldt R., Weber C.A., Hyman A.A., Jülicher F. Growth and division of active droplets provides a model for protocells. Nat. Phys. 2016;13:408–413. doi: 10.1038/nphys3984. DOI

Cronin J.R., Pizzarello S., Epstein S., Krishnamurthy R.V. Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta. 1993;57:4745–4752. doi: 10.1016/0016-7037(93)90197-5. PubMed DOI

Bhowmik S., Krishnamurthy R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nat. Chem. 2019;11:1009–1018. doi: 10.1038/s41557-019-0322-x. PubMed DOI PMC

Wong J.T.-F., Tze-Fei Wong J. Coevolution theory of the genetic code at age thirty. BioEssays. 2005;27:416–425. doi: 10.1002/bies.20208. PubMed DOI

Granold M., Hajieva P., Toşa M.I., Irimie F.-D., Moosmann B. Modern diversification of the amino acid repertoire driven by oxygen. Proc. Natl. Acad. Sci. USA. 2018;115:41–46. doi: 10.1073/pnas.1717100115. PubMed DOI PMC

Kim K.M., Qin T., Jiang Y.-Y., Chen L.-L., Xiong M., Caetano-Anollés D., Zhang H.-Y., Caetano-Anollés G. Protein domain structure uncovers the origin of aerobic metabolism and the rise of planetary oxygen. Structure. 2012;20:67–76. doi: 10.1016/j.str.2011.11.003. PubMed DOI

Fahnestock S., Neumann H., Rich A. Assay of ester and polyester formation by the ribosomal peptidyltransferase. Methods Enzym. 1974;30:489–497. PubMed

Benner S.A., Ellington A.D., Tauer A. Modern metabolism as a palimpsest of the RNA world. Proc. Natl. Acad. Sci. USA. 1989;86:7054–7058. doi: 10.1073/pnas.86.18.7054. PubMed DOI PMC

Javaux E.J. Challenges in evidencing the earliest traces of life. Nature. 2019;572:451–460. doi: 10.1038/s41586-019-1436-4. PubMed DOI

Mayr E. This is Biology: The Science of the Living World. Harvard University Press; Cambridge, MA, USA: 1997.

Hazen R.M., Filley T.R., Goodfriend G.A. Selective Adsorption of L- and D-Amino Acids on Calcite: Implications for Biochemical Homochirality. Proc. Natl. Acad. Sci. USA. 2001;98:5487–5490. doi: 10.1073/pnas.101085998. PubMed DOI PMC

Halevy I., Bachan A. The geologic history of seawater pH. Science. 2017;355:1069–1071. doi: 10.1126/science.aal4151. PubMed DOI

Khersonsky O., Tawfik D.S. Enzyme promiscuity: A mechanistic and evolutionary perspective. Annu. Rev. Biochem. 2010;79:471–505. PubMed

Carbonell P., Lecointre G., Faulon J.-L. Origins of specificity and promiscuity in metabolic networks. J. Biol. Chem. 2011;286:43994–44004. doi: 10.1074/jbc.M111.274050. PubMed DOI PMC

Reek J.N.H., Otto S. Dynamic Combinatorial Chemistry. John Wiley & Sons; Hoboken, NJ, USA: 2010.

Tena-Solsona M., Wanzke C., Riess B., Bausch A.R., Boekhoven J. Self-selection of dissipative assemblies driven by primitive chemical reaction networks. Nat. Commun. 2018;9:2044. doi: 10.1038/s41467-018-04488-y. PubMed DOI PMC

Pappas C.G., Shafi R., Sasselli I.R., Siccardi H., Wang T., Narang V., Abzalimov R., Wijerathne N., Ulijn R.V. Dynamic peptide libraries for the discovery of supramolecular nanomaterials. Nat. Nanotechnol. 2016;11:960–967. doi: 10.1038/nnano.2016.169. PubMed DOI

Surman A.J., Rodriguez-Garcia M., Abul-Haija Y.M., Cooper G.J.T., Gromski P.S., Turk-MacLeod R., Mullin M., Mathis C., Walker S.I., Cronin L. Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions. Proc. Natl. Acad. Sci. USA. 2019;116:5387–5392. doi: 10.1073/pnas.1813987116. PubMed DOI PMC

Vincent L., Berg M., Krismer M., Saghafi S.S., Cosby J., Sankari T., Vetsigian K., Cleaves H.J., Baum D.A. Chemical ecosystem selection on mineral surfaces reveals long-term dynamics consistent with the spontaneous emergence of mutual catalysis. Life. 2019;9:80. doi: 10.3390/life9040080. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...