Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
741912
European Research Council - International
PubMed
29323115
PubMed Central
PMC5765019
DOI
10.1038/s41467-017-02639-1
PII: 10.1038/s41467-017-02639-1
Knihovny.cz E-resources
- MeSH
- Biopolymers chemistry MeSH
- Models, Chemical MeSH
- Evolution, Chemical MeSH
- Molecular Structure MeSH
- Nucleosides chemistry MeSH
- Origin of Life MeSH
- RNA chemistry MeSH
- Water chemistry MeSH
- Earth, Planet MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biopolymers MeSH
- Nucleosides MeSH
- RNA MeSH
- Water MeSH
The molecules of life were created by a continuous physicochemical process on an early Earth. In this hadean environment, chemical transformations were driven by fluctuations of the naturally given physical parameters established for example by wet-dry cycles. These conditions might have allowed for the formation of (self)-replicating RNA as the fundamental biopolymer during chemical evolution. The question of how a complex multistep chemical synthesis of RNA building blocks was possible in such an environment remains unanswered. Here we report that geothermal fields could provide the right setup for establishing wet-dry cycles that allow for the synthesis of RNA nucleosides by continuous synthesis. Our model provides both the canonical and many ubiquitous non-canonical purine nucleosides in parallel by simple changes of physical parameters such as temperature, pH and concentration. The data show that modified nucleosides were potentially formed as competitor molecules. They could in this sense be considered as molecular fossils.
See more in PubMed
Benner SA, Kim HJ, Carrigan MA. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 2012;45:2025–2034. doi: 10.1021/ar200332w. PubMed DOI
Budin I, Szostak JW. Expanding roles for diverse physical phenomena during the origin of life. Annu. Rev. Biophys. 2010;39:245–263. doi: 10.1146/annurev.biophys.050708.133753. PubMed DOI PMC
Pace NR. Origin of life-facing up to the physical setting. Cell. 1991;65:531–533. doi: 10.1016/0092-8674(91)90082-A. PubMed DOI
Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl. Acad. Sci. USA. 2012;109:E821–E830. doi: 10.1073/pnas.1117774109. PubMed DOI PMC
Djokic T, Van Kranendonk MJ, Campbell KA, Walter MR, Ward CR. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 2017;8:15263. doi: 10.1038/ncomms15263. PubMed DOI PMC
Damer B, Deamer D. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life. 2015;5:872. doi: 10.3390/life5010872. PubMed DOI PMC
Deamer D, Singaram S, Rajamani S, Kompanichenko V, Guggenheim S. Self-assembly processes in the prebiotic environment. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2006;361:1809–1818. doi: 10.1098/rstb.2006.1905. PubMed DOI PMC
Deamer D, Van Kranendonk M, Djokic T. The new origins of life. Sci. Am. 2017;317:30–35. PubMed
Higgs PG, Lehman N. The RNA World: molecular cooperation at the origins of life. Nat. Rev. Genet. 2015;16:7–17. doi: 10.1038/nrg3841. PubMed DOI
Wachowius, F., Attwater, J. & Holliger, P. Nucleic acids: function and potential for abiogenesis. Q. Rev. Biophys. 50, e4 (2017). PubMed
Robertson, M. P. & Joyce, G. F. The Origins of the RNA World. Cold Spring Harb. Perspect. Biol. 4, a003608 (2010). PubMed PMC
Joyce GF. The antiquity of RNA-based evolution. Nature. 2002;418:214–221. doi: 10.1038/418214a. PubMed DOI
Cafferty BJ, Fialho DM, Khanam J, Krishnamurthy R, Hud NV. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat. Commun. 2016;7:11328. doi: 10.1038/ncomms11328. PubMed DOI PMC
Carell T, et al. Structure and function of noncanonical nucleobases. Angew. Chem. Int. Ed. 2012;51:7110–7131. doi: 10.1002/anie.201201193. PubMed DOI
Rios AC, Tor Y. On the origin of the canonical nucleobases: an assessment of selection pressures across chemical and early biological evolution. Isr. J. Chem. 2013;53:469–483. doi: 10.1002/ijch.201300009. PubMed DOI PMC
Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–242. doi: 10.1038/nature08013. PubMed DOI
Stairs S, et al. Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides. Nat. Commun. 2017;8:15270. doi: 10.1038/ncomms15270. PubMed DOI PMC
Becker S, et al. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science. 2016;352:833–836. doi: 10.1126/science.aad2808. PubMed DOI
Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015;7:301–307. doi: 10.1038/nchem.2202. PubMed DOI PMC
Fiore M, Strazewski P. Bringing prebiotic nucleosides and nucleotides down to earth. Angew. Chem. Int. Ed. 2016;55:13930–13933. doi: 10.1002/anie.201606232. PubMed DOI
Kim HJ, et al. Synthesis of carbohydrates in mineral-guided prebiotic cycles. J. Am. Chem. Soc. 2011;133:9457–9468. doi: 10.1021/ja201769f. PubMed DOI
Kofoed J, Reymond JL, Darbre T. Prebiotic carbohydrate synthesis: zinc-proline catalyzes direct aqueous aldol reactions of α-hydroxy aldehydes and ketones. Org. Biomol. Chem. 2005;3:1850–1855. doi: 10.1039/b501512j. PubMed DOI
Harsch G, Bauer H, Voelter W. Kinetik, katalyse und mechanismus der sekundärreaktion in der schlußphase der formose-reaktion. Liebigs Ann. 1984;1984:623–635. doi: 10.1002/jlac.198419840402. DOI
Meinert C, et al. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science. 2016;352:208–212. doi: 10.1126/science.aad8137. PubMed DOI
Wächtershäuser G. An all-purine precursor of nucleic acids. Proc. Natl. Acad. Sci. USA. 1988;85:1134–1135. doi: 10.1073/pnas.85.4.1134. PubMed DOI PMC
Kim HJ, Benner SA. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc. Natl. Acad. Sci. USA. 2017;114:11315–11320. doi: 10.1073/pnas.1710778114. PubMed DOI PMC
Saladino R, et al. Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context. Sci. Rep. 2017;7:14709. doi: 10.1038/s41598-017-15392-8. PubMed DOI PMC
Saladino R, et al. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl. Acad. Sci. USA. 2015;112:E2746–E2755. doi: 10.1073/pnas.1422225112. PubMed DOI PMC
Björk GR, et al. A primordial tRNA modification required for the evolution of life? EMBO J. 2001;20:231–239. doi: 10.1093/emboj/20.1.231. PubMed DOI PMC
Grosjean, H. DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution (Taylor & Francis, Boca Raton, FL, 2009).
Engel J, von Hippel PH. Effects of methylation on the stability of nucleic acid conformations. J. Biol. Chem. 1978;253:927–934. PubMed
Decatur WA, Fournier MJ. rRNA modifications and ribosome function. Trends Biochem. Sci. 2002;27:344–351. doi: 10.1016/S0968-0004(02)02109-6. PubMed DOI
Motorin Y, Helm M. tRNA stabilization by modified nucleotides. Biochemistry. 2010;49:4934–4944. doi: 10.1021/bi100408z. PubMed DOI
Helm M. Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Res. 2006;34:721–733. doi: 10.1093/nar/gkj471. PubMed DOI PMC
Forsythe JG, et al. Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic earth. Angew. Chem. Int. Ed. 2015;54:9871–9875. doi: 10.1002/anie.201503792. PubMed DOI PMC
Da Silva L, Maurel MC, Deamer D. Salt-promoted synthesis of RNA-like molecules in simulated hydrothermal conditions. J. Mol. Evol. 2015;80:86–97. doi: 10.1007/s00239-014-9661-9. PubMed DOI
Burcar B, et al. Darwin’s warm little pond: a one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew. Chem. Int. Ed. 2016;55:13249–13253. doi: 10.1002/anie.201606239. PubMed DOI
Kim HJ, et al. Evaporite borate-containing mineral ensembles make phosphate available and regiospecifically phosphorylate ribonucleosides: borate as a multifaceted problem solver in prebiotic chemistry. Angew. Chem. Int. Ed. 2016;55:15816–15820. doi: 10.1002/anie.201608001. PubMed DOI
Anantharaman V, Koonin EV, Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 2002;30:1427–1464. doi: 10.1093/nar/30.7.1427. PubMed DOI PMC
Weiss MC, et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 2016;1:16116. doi: 10.1038/nmicrobiol.2016.116. PubMed DOI
Orgel LE. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 2004;39:99–123. doi: 10.1080/10409230490460765. PubMed DOI
Jadhav VR, Yarus M. Coenzymes as coribozymes. Biochimie. 2002;84:877–888. doi: 10.1016/S0300-9084(02)01404-9. PubMed DOI
The Future of Origin of Life Research: Bridging Decades-Old Divisions