Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29116184
PubMed Central
PMC5677017
DOI
10.1038/s41598-017-15392-8
PII: 10.1038/s41598-017-15392-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The formation of nucleosides in abiotic conditions is a major hurdle in origin-of-life studies. We have determined the pathway of a general reaction leading to the one-pot synthesis of ribo- and 2'-deoxy-ribonucleosides from sugars and purine nucleobases under proton irradiation in the presence of a chondrite meteorite. These conditions simulate the presumptive conditions in space or on an early Earth fluxed by slow protons from the solar wind, potentially mimicking a plausible prebiotic scenario. The reaction (i) requires neither pre-activated precursors nor intermediate purification/concentration steps, (ii) is based on a defined radical mechanism, and (iii) is characterized by stereoselectivity, regioselectivity and (poly)glycosylation. The yield is enhanced by formamide and meteorite relative to the control reaction.
Centre de Biophysique Moleculaire UPR CNRS4301 Orléans France
CNRS Institut des Matériaux de Paris Centre Paris France
Joint Institute for Nuclear Research JINR's Laboratory of Radiation Biology Dubna Russia
Zobrazit více v PubMed
Saladino R, et al. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc Natl Acad Sci USA. 2015;112:E2746–E2755. doi: 10.1073/pnas.1422225112. PubMed DOI PMC
Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E. Formamide and the origin of life. Phys Life Rev. 2012;9:84–104. doi: 10.1016/j.plrev.2011.12.002. PubMed DOI
Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem Soc Rev. 2012;41:5526–5565. doi: 10.1039/c2cs35066a. PubMed DOI
Ferus M, et al. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc Natl Acad Sci USA. 2014;112:15030–15035. PubMed PMC
Saitta AM, Saija F. Miller experiments in atomistic computer simulations. Proc Natl Acad Sci USA. 2014;111:13768–13773. doi: 10.1073/pnas.1402894111. PubMed DOI PMC
Adande GR, Woolf NJ, Ziurys LM. Observations of interstellar formamide: availability of a prebiotic precursor in the galactic habitable zone. Astrobiology. 2013;13:439–453. doi: 10.1089/ast.2012.0912. PubMed DOI PMC
Bockelee-Morvan D, et al. New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link Between Cometary and Interstellar Material. Astron Astrophys. 2000;353:1101–1114.
Benner SA, Kim HJ, Carrigan MA. Asphalt, Water, and the Prebiotic Synthesis of Ribose, Ribonucleosides, and RNA. Acc Chem Res. 2012;45:2025–2034. doi: 10.1021/ar200332w. PubMed DOI
Saladino R, Crestini C, Costanzo G, Di Mauro E. Advances in prebiotic syntheseis of nucleic acids bases. Implications for the origin of life. Curr Org Chem. 2004;8:1425–1443.
Ricardo A, Carrigan MA, Olcott AN, Benner SA. Borate minerals stabilize ribose. Science. 2004;303:196. doi: 10.1126/science.1092464. PubMed DOI
Ritson D, Sutherland JD. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nature Chem. 2012;11:895–899. doi: 10.1038/nchem.1467. PubMed DOI PMC
Kim HJ, et al. Synthesis of carbohydrates in mineral-guided prebiotic cycles. J. Am Chem Soc. 2011;133:9457–9468. doi: 10.1021/ja201769f. PubMed DOI
Rotelli L, et al. The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci Rep. 2016;6:38888. doi: 10.1038/srep38888. PubMed DOI PMC
Sutherland JD. The Origin of Life-Out of the Blue. Angew Chem Int Ed Engl. 2016;55:104–121. doi: 10.1002/anie.201506585. PubMed DOI
Sanchez RA, Orgel LS. Studies in prebiotic synthesis and photoanomerization of pyrimidine nucleosides. J Mol Biol. 1970;47:531–543. doi: 10.1016/0022-2836(70)90320-7. PubMed DOI
Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–242. doi: 10.1038/nature08013. PubMed DOI
Powner MW, Sutherland JD. Phosphate-mediated interconversion of ribo- and arabino- configured prebiotic nucleotide intermediates. Angew Chem Int Ed. 2010;49:4641–4643. doi: 10.1002/anie.201001662. PubMed DOI
Xu J, et al. A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization. Nature Chem. 2017;9:303–309. doi: 10.1038/nchem.2664. PubMed DOI PMC
Becker S, et al. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science. 2016;352:833–836. doi: 10.1126/science.aad2808. PubMed DOI
Saladino R, et al. Mechanism of degradation of purine nucleosides by formamide. Implications for chemical DNA sequencing procedures. J Am Chem Soc. 1996;118:5615–5619. doi: 10.1021/ja953527y. PubMed DOI
Fuller WD, Sanchez RA, Orgel LE. Studies on prebiotic synthesis. VI. Synthesis of purine nucleosides. J. Mol. Biol. 1970;67:25–33. doi: 10.1016/0022-2836(72)90383-X. PubMed DOI
Šponer JE, et al. Emergence of the First Catalytic Oligonucleotides in a formamide Based Origin Scenario. Chem Eur J. 2016;22:3572–3586. doi: 10.1002/chem.201503906. PubMed DOI
Callahan MP, et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci USA. 2011;108:13995–13998. doi: 10.1073/pnas.1106493108. PubMed DOI PMC
Price NE, Catalano MJ, Liu S, Wang Y, Gates KS. Chemical and structural characterization of inter-strand cross-links formed between abasic sites and adenine residues in duplex DNA. Nucleic Acids Res. 2015;43:3434–3441. doi: 10.1093/nar/gkv174. PubMed DOI PMC
Pearson D, et al. LC-MS based quantification of 2′-ribosylated nucleosides Ar(p) and Gr(p) in tRNA. Chem Commun. 2011;47:5196–5198. doi: 10.1039/c1cc11011j. PubMed DOI
Martello R, Mangerich A, Sass S, Dedon PC, Burkle A. Quantification of cellular poly(ADP-ribosyl)ation by stable isotope dilution mass spectrometry reveals tissue- and drug-dependent stress response dynamics. ACS Chem Biol. 2013;8:1567–1575. doi: 10.1021/cb400170b. PubMed DOI PMC
Ortiz P, Fernández-Bertrán J, Reguera E. Role of the anion in the alkali halides interaction with D-ribose: a 1H and 13C NMR spectroscopy study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005;61:1977–83. doi: 10.1016/j.saa.2004.07.009. PubMed DOI
Eschenmoser A, Dobler M. Why pentose and not hexose nucleic acids? Helv Chim Acta. 1992;75:218–259. doi: 10.1002/hlca.19920750120. DOI
Akouche M, et al. Thermal Behavior of d-Ribose Adsorbed on Silica: Effect of Inorganic Salt Coadsorption and Significance for PrebioticChemistry. Chem Eur J. 2016;22:1–14. doi: 10.1002/chem.201601418. PubMed DOI
Benner K, Klüfers P, Schuhmacher JZ. Synthesis and Structure of a Tetrahydroxydisilane and a Trihydroxycyclotrisiloxane with All the OH Functions in cis Position. Inorg Allg Chem. 1999;625:541–543. doi: 10.1002/(SICI)1521-3749(199904)625:4<541::AID-ZAAC541>3.0.CO;2-A. DOI
Benner K, Klüfers P, Vogt M. Hydrogen-Bonded Sugar-Alcohol Trimers as Hexadentate Silicon Chelators in Aqueous Solution. Angew Chem Int Ed. 2003;42:1058–1062. doi: 10.1002/anie.200390274. PubMed DOI
Lambert JB, Lu G, Singer SR, Kolb VM. Silicate Complexes of Sugars in Aqueous Solution. J. Am Chem Soc. 2004;126:9611–9625. doi: 10.1021/ja031748v. PubMed DOI
Georgelin T, et al. Stabilization of ribofuranose by a mineral surface. Carbohydr Res. 2015;402:241–244. doi: 10.1016/j.carres.2014.07.018. PubMed DOI
Schuchmann MN, von Sonntag C. Radiation chemistry of carbohydrates. Part 14. Hydroxyl radical induced oxidation of D-glucose in oxygenated aqueous solution. J. Chem Soc Perkin Trans. 1977;2. 0:1958–1963. doi: 10.1039/p29770001958. DOI
Madden KP, Fessenden RW. ESR study of the attack of photolytically produced hydroxyl radicals on α-methyl-D-glucopyranoside in aqueous solution. J. Am Chem Soc. 1982;104:2578–2581. doi: 10.1021/ja00373a040. DOI
Miaskiewicz K, Osman R. Theoretical study on the deoxyribose radicals formed by hydrogen abstraction. J. Am Chem Soc. 1994;116:232–238. doi: 10.1021/ja00080a027. DOI
von Sonntag C. Free radical reactions of carbohydrates as studied by radiation techniques. Adv. Carbohydr. Chem. Biochem. 37, 7–77 (19809.
Kochetkov, N. K. Radiation Chemistry of Carbohydrates, Pergamon Press Oxford, 1979.
Wetmore SD, Boyd RJ, Eriksson LA. Theoretical Investigation of Adenine Radicals Generated in Irradiated DNA Components. J. Phys Chem B. 1998;102:10602–10614. doi: 10.1021/jp982417l. DOI
Wetmore SD, Boyd RJ, Eriksson LA. Comparison of Experimental and Calculated Hyperfine Coupling Constants. Which Radicals Are Formed in Irradiated Guanine? J. Phys Chem B. 1998;102:9332–9343. doi: 10.1021/jp982437n. DOI
Von Sonntag C. Carbohydrate radicals: from ethylene glycol to DNA strand breakage. Int J Rad Biol. 2014;90:416–422. doi: 10.3109/09553002.2014.908040. PubMed DOI
Crimmins MT. New developments in the enantioselective synthesis of cyclopentyl carbocyclic nucleosides. Tetrahedron. 1998;54:9229–9272. doi: 10.1016/S0040-4020(98)00320-2. DOI
2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions