2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions

. 2021 May 21 ; 12 (1) : 3018. [epub] 20210521

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34021158

Grantová podpora
MC_UP_A024_1009 Medical Research Council - United Kingdom

Odkazy

PubMed 34021158
PubMed Central PMC8139960
DOI 10.1038/s41467-021-23300-y
PII: 10.1038/s41467-021-23300-y
Knihovny.cz E-zdroje

High-yielding and selective prebiotic syntheses of RNA and DNA nucleotides involve UV irradiation to promote the key reaction steps and eradicate biologically irrelevant isomers. While these syntheses were likely enabled by UV-rich prebiotic environment, UV-induced formation of photodamages in polymeric nucleic acids, such as cyclobutane pyrimidine dimers (CPDs), remains the key unresolved issue for the origins of RNA and DNA on Earth. Here, we demonstrate that substitution of adenine with 2,6-diaminopurine enables repair of CPDs with yields reaching 92%. This substantial self-repairing activity originates from excellent electron donating properties of 2,6-diaminopurine in nucleic acid strands. We also show that the deoxyribonucleosides of 2,6-diaminopurine and adenine can be formed under the same prebiotic conditions. Considering that 2,6-diaminopurine was previously shown to increase the rate of nonenzymatic RNA replication, this nucleobase could have played critical roles in the formation of functional and photostable RNA/DNA oligomers in UV-rich prebiotic environments.

Zobrazit více v PubMed

Taylor JS. Unraveling the molecular pathway from sunlight to skin cancer. Acc. Chem. Res. 1994;27:76–82. doi: 10.1021/ar00039a003. DOI

Pagès V, Fuchs RP. How DNA lesions are turned into mutations within cells? Oncogene. 2002;21:8957–8966. doi: 10.1038/sj.onc.1206006. PubMed DOI

Kripke ML, Cox PA, Alas LG, Yarosh DB. Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc. Natl Acad. Sci. USA. 1992;89:7516–7520. doi: 10.1073/pnas.89.16.7516. PubMed DOI PMC

Schreier WJ, et al. Thymine dimerization in DNA is an ultrafast photoreaction. Science. 2007;315:625–629. doi: 10.1126/science.1135428. PubMed DOI PMC

Mouret S, et al. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc. Natl Acad. Sci. USA. 2006;103:13765–13770. doi: 10.1073/pnas.0604213103. PubMed DOI PMC

Rauer C, Nogueira JJ, Marquetand P, González L. Cyclobutane thymine photodimerization mechanism revealed by nonadiabatic molecular dynamics. J. Am. Chem. Soc. 2016;138:15911–15916. doi: 10.1021/jacs.6b06701. PubMed DOI

Mees A, et al. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science. 2004;306:1789–1793. doi: 10.1126/science.1101598. PubMed DOI

Tan C, et al. The molecular origin of high DNA-repair efficiency by photolyase. Nat. Commun. 2015;6:7302. doi: 10.1038/ncomms8302. PubMed DOI

Gehring W, Rosbash M. The coevolution of blue-light photoreception and circadian rhythms. J. Mol. Evol. 2003;57:S286–S289. doi: 10.1007/s00239-003-0038-8. PubMed DOI

Deck C, Jauker M, Richert C. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nat. Chem. 2011;3:603–608. doi: 10.1038/nchem.1086. PubMed DOI

Mansy SS, et al. Template-directed synthesis of a genetic polymer in a model protocell. Nature. 2008;454:122–125. doi: 10.1038/nature07018. PubMed DOI PMC

Adamala K, Szostak JW. Nonenzymatic template-directed RNA synthesis inside model protocells. Science. 2013;342:1098–1100. doi: 10.1126/science.1241888. PubMed DOI PMC

Kim SC, O’Flaherty DK, Zhou L, Lelyveld VS, Szostak JW. Inosine, but none of the 8-oxo-purines, is a plausible component of a primordial version of RNA. Proc. Natl Acad. Sci. USA. 2018;115:13318–13323. doi: 10.1073/pnas.1814367115. PubMed DOI PMC

Saladino R, et al. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl Acad. Sci. USA. 2015;112:E2746–E2755. doi: 10.1073/pnas.1422225112. PubMed DOI PMC

Becker S, et al. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science. 2016;352:833–836. doi: 10.1126/science.aad2808. PubMed DOI

Saladino R, et al. Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context. Sci. Rep. 2017;7:14709. doi: 10.1038/s41598-017-15392-8. PubMed DOI PMC

Becker S, et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science. 2019;366:76–82. doi: 10.1126/science.aax2747. PubMed DOI

Teichert JS, Kruse FM, Trapp O. Direct prebiotic pathway to DNA nucleosides. Angew. Chem. Int. Ed. 2019;58:9944–9947. doi: 10.1002/anie.201903400. PubMed DOI

Yadav M, Kumar R, Krishnamurthy R. Chemistry of abiotic nucleotide synthesis. Chem. Rev. 2020;120:4766–4805. doi: 10.1021/acs.chemrev.9b00546. PubMed DOI

Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–242. doi: 10.1038/nature08013. PubMed DOI

Xu J, et al. A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization. Nat. Chem. 2017;9:303–309. doi: 10.1038/nchem.2664. PubMed DOI PMC

Xu J, Green NJ, Gibard C, Krishnamurthy R, Sutherland JD. Prebiotic phosphorylation of 2-thiouridine provides either nucleotides or DNA building blocks via photoreduction. Nat. Chem. 2019;11:457–462. doi: 10.1038/s41557-019-0225-x. PubMed DOI PMC

Roberts SJ, et al. Selective prebiotic conversion of pyrimidine and purine anhydronucleosides into Watson-Crick base-pairing arabino-furanosyl nucleosides in water. Nat. Commun. 2018;9:4073. doi: 10.1038/s41467-018-06374-z. PubMed DOI PMC

Xu J, et al. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature. 2020;582:60–66. doi: 10.1038/s41586-020-2330-9. PubMed DOI PMC

Ranjan S, Sasselov DD. Constraints on the early terrestrial surface UV environment relevant to prebiotic chemistry. Astrobiology. 2017;17:169–204. doi: 10.1089/ast.2016.1519. PubMed DOI

Bucher DB, Kufner CL, Schlueter A, Carell T, Zinth W. UV-induced charge transfer states in DNA promote sequence selective self-repair. J. Am. Chem. Soc. 2016;138:186–190. doi: 10.1021/jacs.5b09753. PubMed DOI

Nguyen KV, Burrows CJ. A prebiotic role for 8-oxoguanosine as a flavin mimic in pyrimidine dimer photorepair. J. Am. Chem. Soc. 2011;133:14586–14589. doi: 10.1021/ja2072252. PubMed DOI

Szabla R, Kruse H, Stadlbauer P, Šponer J, Sobolewski AL. Sequential electron transfer governs the UV-induced self-repair of DNA photolesions. Chem. Sci. 2018;9:3131–3140. doi: 10.1039/C8SC00024G. PubMed DOI PMC

Piccinni V, Reiter S, Keefer D, de Vivie-Riedle R. Multiscale conformational sampling reveals excited-state locality in DNA self-repair mechanism. J. Phys. Chem. A. 2020;124:9133–9140. doi: 10.1021/acs.jpca.0c07207. PubMed DOI

Khudyakov IYA, Kirnos MD, Alexandrushkina NI, Vanyushin BF. Cyanophage S-2L contains DNA with 2,6-diaminopurine substituted for adenine. Virology. 1978;88:8–18. doi: 10.1016/0042-6822(78)90104-6. PubMed DOI

Kirnos MD, Khudyakov IY, Alexandrushkina NI, Vanyushin BF. 2-Aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA. Nature. 1977;270:369–370. doi: 10.1038/270369a0. PubMed DOI

Krishnamurthy, R., Jiménez, E. I. & Gibard, C. Prebiotic phosphorylation and concomitant oligomerization of deoxynucleosides to form DNA. Angew. Chem. Int. Ed. 60, 10775–10783 (2021). PubMed

Schrum JP, Ricardo A, Krishnamurthy M, Blain JC, Szostak JW. Efficient and rapid template-directed nucleic acid copying using 2′-amino-2′,3′-dideoxyribonucleoside−5′-phosphorimidazolide monomers. J. Am. Chem. Soc. 2009;131:14560–14570. doi: 10.1021/ja906557v. PubMed DOI PMC

Hartel C, Göbel MW. Substitution of adenine by purine-2,6-diamine improves the nonenzymatic oligomerization of ribonucleotides on templates containing thymidine. Helv. Chim. Acta. 2000;83:2541–2549. doi: 10.1002/1522-2675(20000906)83:9<2541::AID-HLCA2541>3.0.CO;2-8. DOI

Kozlov IA, Orgel LE. Nonenzymatic oligomerization reactions on templates containing inosinic acid or diaminopurine nucleotide residues. Helv. Chim. Acta. 1999;82:1799–1805. doi: 10.1002/(SICI)1522-2675(19991110)82:11<1799::AID-HLCA1799>3.0.CO;2-S. PubMed DOI

Bucher DB, Pilles BM, Carell T, Zinth W. Charge separation and charge delocalization identified in long-living states of photoexcited DNA. PNAS. 2014;111:4369–4374. doi: 10.1073/pnas.1323700111. PubMed DOI PMC

Hättig C. Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2) Adv. Quantum Chem. 2005;50:37–60. doi: 10.1016/S0065-3276(05)50003-0. DOI

Dreuw A, Wormit M. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015;5:82–95. doi: 10.1002/wcms.1206. DOI

Spata VA, Lee W, Matsika S. Excimers and exciplexes in photoinitiated processes of oligonucleotides. J. Phys. Chem. Lett. 2016;7:976–984. doi: 10.1021/acs.jpclett.5b02756. PubMed DOI

Pan Z, Chen J, Schreier WJ, Kohler B, Lewis FD. Thymine dimer photoreversal in purine-containing trinucleotides. J. Phys. Chem. B. 2012;116:698–704. doi: 10.1021/jp210575g. PubMed DOI

Martinez TJ. Seaming is believing. Nature. 2010;467:412–413. doi: 10.1038/467412a. PubMed DOI

Lee W, Matsika S. Role of charge transfer states into the formation of cyclobutane pyrimidine dimers in DNA. Faraday Discuss. 2019;216:507–519. doi: 10.1039/C8FD00184G. PubMed DOI

Subotnik JE, Yeganeh S, Cave RJ, Ratner MA. Constructing diabatic states from adiabatic states: extending generalized Mulliken–Hush to multiple charge centers with Boys localization. J. Chem. Phys. 2008;129:244101. doi: 10.1063/1.3042233. PubMed DOI

Pecourt J-ML, Peon J, Kohler B. DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides. J. Am. Chem. Soc. 2001;123:10370–10378. doi: 10.1021/ja0161453. PubMed DOI

Sanchez RA, Orgel LE. Studies in prebiotic synthesis: V. Synthesis and photoanomerization of pyrimidine nucleosides. J. Mol. Biol. 1970;47:531–543. doi: 10.1016/0022-2836(70)90320-7. PubMed DOI

Callahan MP, et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl Acad. Sci. USA. 2011;108:13995–13998. doi: 10.1073/pnas.1106493108. PubMed DOI PMC

Beckstead AA, Zhang Y, Vries MSde, Kohler B. Life in the light: nucleic acid photoproperties as a legacy of chemical evolution. Phys. Chem. Chem. Phys. 2016;18:24228–24238. doi: 10.1039/C6CP04230A. PubMed DOI

Plasser F, et al. Surface hopping dynamics with correlated single-reference methods: 9H-adenine as a case study. J. Chem. Theory Comput. 2014;10:1395–1405. doi: 10.1021/ct4011079. PubMed DOI

Fialho DM, Roche TP, Hud NV. Prebiotic syntheses of noncanonical nucleosides and nucleotides. Chem. Rev. 2020;120:4806–4830. doi: 10.1021/acs.chemrev.0c00069. PubMed DOI

Kim H-J, Benner SA. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc. Natl Acad. Sci. USA. 2017;114:11315–11320. doi: 10.1073/pnas.1710778114. PubMed DOI PMC

Urban MW, et al. Key-and-lock commodity self-healing copolymers. Science. 2018;362:220–225. doi: 10.1126/science.aat2975. PubMed DOI

Crespo-Hernández CE, Cohen B, Kohler B. Base stacking controls excited-state dynamics in A·T DNA. Nature. 2005;436:1141–1144. doi: 10.1038/nature03933. PubMed DOI

Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI

Izadi S, Anandakrishnan R, Onufriev AV. Building water models: a different approach. J. Phys. Chem. Lett. 2014;5:3863–3871. doi: 10.1021/jz501780a. PubMed DOI PMC

Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC

Zgarbová M, et al. Refinement of the sugar–phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J. Chem. Theory Comput. 2015;11:5723–5736. doi: 10.1021/acs.jctc.5b00716. PubMed DOI

Pérez A, et al. Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys. J. 2007;92:3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC

Krepl M, et al. Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012;8:2506–2520. doi: 10.1021/ct300275s. PubMed DOI PMC

Zgarbová M, et al. Toward improved description of DNA backbone: revisiting epsilon and zeta torsion force field parameters. J. Chem. Theory Comput. 2013;9:2339–2354. doi: 10.1021/ct400154j. PubMed DOI PMC

Cornell WD, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995;117:5179–5197. doi: 10.1021/ja00124a002. DOI

Hopkins CW, Le Grand S, Walker RC, Roitberg AE. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI

Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI

Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Computational Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI

Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI

Case, D. A. et al. AMBER 2016 (2016).

Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science. 2014;344:1492–1496. doi: 10.1126/science.1242072. PubMed DOI

Bottaro S, Di Palma F, Bussi G. The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Res. 2014;42:13306–13314. doi: 10.1093/nar/gku972. PubMed DOI PMC

Götz AW, Clark MA, Walker RC. An extensible interface for QM/MM molecular dynamics simulations with AMBER. J. Comput. Chem. 2014;35:95–108. doi: 10.1002/jcc.23444. PubMed DOI PMC

Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989;162:165–169. doi: 10.1016/0009-2614(89)85118-8. DOI

Grimme S, Brandenburg JG, Bannwarth C, Hansen A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 2015;143:054107. doi: 10.1063/1.4927476. PubMed DOI

Szabla R, Havrila M, Kruse H, Šponer J. Comparative assessment of different RNA tetranucleotides from the DFT-D3 and force field perspective. J. Phys. Chem. B. 2016;120:10635–10648. doi: 10.1021/acs.jpcb.6b07551. PubMed DOI

Kruse H, Šponer J. Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions. Phys. Chem. Chem. Phys. 2014;17:1399–1410. doi: 10.1039/C4CP04680C. PubMed DOI

Eckert F, Pulay P, Werner H-J. Ab initio geometry optimization for large molecules. J. Comput. Chem. 1997;18:1473–1483. doi: 10.1002/(SICI)1096-987X(199709)18:12<1473::AID-JCC5>3.0.CO;2-G. DOI

Trofimov AB, Schirmer J. An efficient polarization propagator approach to valence electron excitation spectra. J. Phys. B: Mol. Opt. Phys. 1995;28:2299–2324. doi: 10.1088/0953-4075/28/12/003. DOI

Plasser F, Bäppler SA, Wormit M, Dreuw A. New tools for the systematic analysis and visualization of electronic excitations. II. Applications. J. Chem. Phys. 2014;141:024107. doi: 10.1063/1.4885820. PubMed DOI

Plasser F, Wormit M, Dreuw A. New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J. Chem. Phys. 2014;141:024106. doi: 10.1063/1.4885819. PubMed DOI

Levine BG, Coe JD, Martínez TJ. Optimizing conical intersections without derivative coupling vectors: application to multistate multireference second-order perturbation theory (MS-CASPT2) J. Phys. Chem. B. 2008;112:405–413. doi: 10.1021/jp0761618. PubMed DOI

Tuna D, et al. Assessment of approximate coupled-cluster and algebraic-diagrammatic-construction methods for ground- and excited-state reaction paths and the conical-intersection seam of a retinal-chromophore model. J. Chem. Theory Comput. 2015;11:5758–5781. doi: 10.1021/acs.jctc.5b00022. PubMed DOI

Szabla R, W. Góra R, Šponer J. Ultrafast excited-state dynamics of isocytosine. Phys. Chem. Chem. Phys. 2016;18:20208–20218. doi: 10.1039/C6CP01391K. PubMed DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.14268056

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace