2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_UP_A024_1009
Medical Research Council - United Kingdom
PubMed
34021158
PubMed Central
PMC8139960
DOI
10.1038/s41467-021-23300-y
PII: 10.1038/s41467-021-23300-y
Knihovny.cz E-zdroje
- MeSH
- 2-aminopurin analogy a deriváty farmakologie MeSH
- adenin MeSH
- DNA účinky léků účinky záření MeSH
- nukleotidy MeSH
- nukleové kyseliny MeSH
- oprava DNA účinky léků MeSH
- pyrimidinové dimery MeSH
- RNA chemie MeSH
- simulace molekulární dynamiky MeSH
- ultrafialové záření škodlivé účinky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-aminopurin MeSH
- 2,6-diaminopurine MeSH Prohlížeč
- adenin MeSH
- DNA MeSH
- nukleotidy MeSH
- nukleové kyseliny MeSH
- pyrimidinové dimery MeSH
- RNA MeSH
High-yielding and selective prebiotic syntheses of RNA and DNA nucleotides involve UV irradiation to promote the key reaction steps and eradicate biologically irrelevant isomers. While these syntheses were likely enabled by UV-rich prebiotic environment, UV-induced formation of photodamages in polymeric nucleic acids, such as cyclobutane pyrimidine dimers (CPDs), remains the key unresolved issue for the origins of RNA and DNA on Earth. Here, we demonstrate that substitution of adenine with 2,6-diaminopurine enables repair of CPDs with yields reaching 92%. This substantial self-repairing activity originates from excellent electron donating properties of 2,6-diaminopurine in nucleic acid strands. We also show that the deoxyribonucleosides of 2,6-diaminopurine and adenine can be formed under the same prebiotic conditions. Considering that 2,6-diaminopurine was previously shown to increase the rate of nonenzymatic RNA replication, this nucleobase could have played critical roles in the formation of functional and photostable RNA/DNA oligomers in UV-rich prebiotic environments.
EaStCHEM School of Chemistry University of Edinburgh Edinburgh UK
Faculty of Chemistry University of Gdańsk Gdańsk Poland
Institute of Biophysics of the Czech Academy of Sciences Brno Czech Republic
Institute of Physics Polish Academy of Sciences Warsaw Poland
Zobrazit více v PubMed
Taylor JS. Unraveling the molecular pathway from sunlight to skin cancer. Acc. Chem. Res. 1994;27:76–82. doi: 10.1021/ar00039a003. DOI
Pagès V, Fuchs RP. How DNA lesions are turned into mutations within cells? Oncogene. 2002;21:8957–8966. doi: 10.1038/sj.onc.1206006. PubMed DOI
Kripke ML, Cox PA, Alas LG, Yarosh DB. Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc. Natl Acad. Sci. USA. 1992;89:7516–7520. doi: 10.1073/pnas.89.16.7516. PubMed DOI PMC
Schreier WJ, et al. Thymine dimerization in DNA is an ultrafast photoreaction. Science. 2007;315:625–629. doi: 10.1126/science.1135428. PubMed DOI PMC
Mouret S, et al. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc. Natl Acad. Sci. USA. 2006;103:13765–13770. doi: 10.1073/pnas.0604213103. PubMed DOI PMC
Rauer C, Nogueira JJ, Marquetand P, González L. Cyclobutane thymine photodimerization mechanism revealed by nonadiabatic molecular dynamics. J. Am. Chem. Soc. 2016;138:15911–15916. doi: 10.1021/jacs.6b06701. PubMed DOI
Mees A, et al. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science. 2004;306:1789–1793. doi: 10.1126/science.1101598. PubMed DOI
Tan C, et al. The molecular origin of high DNA-repair efficiency by photolyase. Nat. Commun. 2015;6:7302. doi: 10.1038/ncomms8302. PubMed DOI
Gehring W, Rosbash M. The coevolution of blue-light photoreception and circadian rhythms. J. Mol. Evol. 2003;57:S286–S289. doi: 10.1007/s00239-003-0038-8. PubMed DOI
Deck C, Jauker M, Richert C. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nat. Chem. 2011;3:603–608. doi: 10.1038/nchem.1086. PubMed DOI
Mansy SS, et al. Template-directed synthesis of a genetic polymer in a model protocell. Nature. 2008;454:122–125. doi: 10.1038/nature07018. PubMed DOI PMC
Adamala K, Szostak JW. Nonenzymatic template-directed RNA synthesis inside model protocells. Science. 2013;342:1098–1100. doi: 10.1126/science.1241888. PubMed DOI PMC
Kim SC, O’Flaherty DK, Zhou L, Lelyveld VS, Szostak JW. Inosine, but none of the 8-oxo-purines, is a plausible component of a primordial version of RNA. Proc. Natl Acad. Sci. USA. 2018;115:13318–13323. doi: 10.1073/pnas.1814367115. PubMed DOI PMC
Saladino R, et al. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl Acad. Sci. USA. 2015;112:E2746–E2755. doi: 10.1073/pnas.1422225112. PubMed DOI PMC
Becker S, et al. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science. 2016;352:833–836. doi: 10.1126/science.aad2808. PubMed DOI
Saladino R, et al. Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context. Sci. Rep. 2017;7:14709. doi: 10.1038/s41598-017-15392-8. PubMed DOI PMC
Becker S, et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science. 2019;366:76–82. doi: 10.1126/science.aax2747. PubMed DOI
Teichert JS, Kruse FM, Trapp O. Direct prebiotic pathway to DNA nucleosides. Angew. Chem. Int. Ed. 2019;58:9944–9947. doi: 10.1002/anie.201903400. PubMed DOI
Yadav M, Kumar R, Krishnamurthy R. Chemistry of abiotic nucleotide synthesis. Chem. Rev. 2020;120:4766–4805. doi: 10.1021/acs.chemrev.9b00546. PubMed DOI
Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–242. doi: 10.1038/nature08013. PubMed DOI
Xu J, et al. A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization. Nat. Chem. 2017;9:303–309. doi: 10.1038/nchem.2664. PubMed DOI PMC
Xu J, Green NJ, Gibard C, Krishnamurthy R, Sutherland JD. Prebiotic phosphorylation of 2-thiouridine provides either nucleotides or DNA building blocks via photoreduction. Nat. Chem. 2019;11:457–462. doi: 10.1038/s41557-019-0225-x. PubMed DOI PMC
Roberts SJ, et al. Selective prebiotic conversion of pyrimidine and purine anhydronucleosides into Watson-Crick base-pairing arabino-furanosyl nucleosides in water. Nat. Commun. 2018;9:4073. doi: 10.1038/s41467-018-06374-z. PubMed DOI PMC
Xu J, et al. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature. 2020;582:60–66. doi: 10.1038/s41586-020-2330-9. PubMed DOI PMC
Ranjan S, Sasselov DD. Constraints on the early terrestrial surface UV environment relevant to prebiotic chemistry. Astrobiology. 2017;17:169–204. doi: 10.1089/ast.2016.1519. PubMed DOI
Bucher DB, Kufner CL, Schlueter A, Carell T, Zinth W. UV-induced charge transfer states in DNA promote sequence selective self-repair. J. Am. Chem. Soc. 2016;138:186–190. doi: 10.1021/jacs.5b09753. PubMed DOI
Nguyen KV, Burrows CJ. A prebiotic role for 8-oxoguanosine as a flavin mimic in pyrimidine dimer photorepair. J. Am. Chem. Soc. 2011;133:14586–14589. doi: 10.1021/ja2072252. PubMed DOI
Szabla R, Kruse H, Stadlbauer P, Šponer J, Sobolewski AL. Sequential electron transfer governs the UV-induced self-repair of DNA photolesions. Chem. Sci. 2018;9:3131–3140. doi: 10.1039/C8SC00024G. PubMed DOI PMC
Piccinni V, Reiter S, Keefer D, de Vivie-Riedle R. Multiscale conformational sampling reveals excited-state locality in DNA self-repair mechanism. J. Phys. Chem. A. 2020;124:9133–9140. doi: 10.1021/acs.jpca.0c07207. PubMed DOI
Khudyakov IYA, Kirnos MD, Alexandrushkina NI, Vanyushin BF. Cyanophage S-2L contains DNA with 2,6-diaminopurine substituted for adenine. Virology. 1978;88:8–18. doi: 10.1016/0042-6822(78)90104-6. PubMed DOI
Kirnos MD, Khudyakov IY, Alexandrushkina NI, Vanyushin BF. 2-Aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA. Nature. 1977;270:369–370. doi: 10.1038/270369a0. PubMed DOI
Krishnamurthy, R., Jiménez, E. I. & Gibard, C. Prebiotic phosphorylation and concomitant oligomerization of deoxynucleosides to form DNA. Angew. Chem. Int. Ed. 60, 10775–10783 (2021). PubMed
Schrum JP, Ricardo A, Krishnamurthy M, Blain JC, Szostak JW. Efficient and rapid template-directed nucleic acid copying using 2′-amino-2′,3′-dideoxyribonucleoside−5′-phosphorimidazolide monomers. J. Am. Chem. Soc. 2009;131:14560–14570. doi: 10.1021/ja906557v. PubMed DOI PMC
Hartel C, Göbel MW. Substitution of adenine by purine-2,6-diamine improves the nonenzymatic oligomerization of ribonucleotides on templates containing thymidine. Helv. Chim. Acta. 2000;83:2541–2549. doi: 10.1002/1522-2675(20000906)83:9<2541::AID-HLCA2541>3.0.CO;2-8. DOI
Kozlov IA, Orgel LE. Nonenzymatic oligomerization reactions on templates containing inosinic acid or diaminopurine nucleotide residues. Helv. Chim. Acta. 1999;82:1799–1805. doi: 10.1002/(SICI)1522-2675(19991110)82:11<1799::AID-HLCA1799>3.0.CO;2-S. PubMed DOI
Bucher DB, Pilles BM, Carell T, Zinth W. Charge separation and charge delocalization identified in long-living states of photoexcited DNA. PNAS. 2014;111:4369–4374. doi: 10.1073/pnas.1323700111. PubMed DOI PMC
Hättig C. Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2) Adv. Quantum Chem. 2005;50:37–60. doi: 10.1016/S0065-3276(05)50003-0. DOI
Dreuw A, Wormit M. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015;5:82–95. doi: 10.1002/wcms.1206. DOI
Spata VA, Lee W, Matsika S. Excimers and exciplexes in photoinitiated processes of oligonucleotides. J. Phys. Chem. Lett. 2016;7:976–984. doi: 10.1021/acs.jpclett.5b02756. PubMed DOI
Pan Z, Chen J, Schreier WJ, Kohler B, Lewis FD. Thymine dimer photoreversal in purine-containing trinucleotides. J. Phys. Chem. B. 2012;116:698–704. doi: 10.1021/jp210575g. PubMed DOI
Martinez TJ. Seaming is believing. Nature. 2010;467:412–413. doi: 10.1038/467412a. PubMed DOI
Lee W, Matsika S. Role of charge transfer states into the formation of cyclobutane pyrimidine dimers in DNA. Faraday Discuss. 2019;216:507–519. doi: 10.1039/C8FD00184G. PubMed DOI
Subotnik JE, Yeganeh S, Cave RJ, Ratner MA. Constructing diabatic states from adiabatic states: extending generalized Mulliken–Hush to multiple charge centers with Boys localization. J. Chem. Phys. 2008;129:244101. doi: 10.1063/1.3042233. PubMed DOI
Pecourt J-ML, Peon J, Kohler B. DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides. J. Am. Chem. Soc. 2001;123:10370–10378. doi: 10.1021/ja0161453. PubMed DOI
Sanchez RA, Orgel LE. Studies in prebiotic synthesis: V. Synthesis and photoanomerization of pyrimidine nucleosides. J. Mol. Biol. 1970;47:531–543. doi: 10.1016/0022-2836(70)90320-7. PubMed DOI
Callahan MP, et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl Acad. Sci. USA. 2011;108:13995–13998. doi: 10.1073/pnas.1106493108. PubMed DOI PMC
Beckstead AA, Zhang Y, Vries MSde, Kohler B. Life in the light: nucleic acid photoproperties as a legacy of chemical evolution. Phys. Chem. Chem. Phys. 2016;18:24228–24238. doi: 10.1039/C6CP04230A. PubMed DOI
Plasser F, et al. Surface hopping dynamics with correlated single-reference methods: 9H-adenine as a case study. J. Chem. Theory Comput. 2014;10:1395–1405. doi: 10.1021/ct4011079. PubMed DOI
Fialho DM, Roche TP, Hud NV. Prebiotic syntheses of noncanonical nucleosides and nucleotides. Chem. Rev. 2020;120:4806–4830. doi: 10.1021/acs.chemrev.0c00069. PubMed DOI
Kim H-J, Benner SA. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc. Natl Acad. Sci. USA. 2017;114:11315–11320. doi: 10.1073/pnas.1710778114. PubMed DOI PMC
Urban MW, et al. Key-and-lock commodity self-healing copolymers. Science. 2018;362:220–225. doi: 10.1126/science.aat2975. PubMed DOI
Crespo-Hernández CE, Cohen B, Kohler B. Base stacking controls excited-state dynamics in A·T DNA. Nature. 2005;436:1141–1144. doi: 10.1038/nature03933. PubMed DOI
Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI
Izadi S, Anandakrishnan R, Onufriev AV. Building water models: a different approach. J. Phys. Chem. Lett. 2014;5:3863–3871. doi: 10.1021/jz501780a. PubMed DOI PMC
Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC
Zgarbová M, et al. Refinement of the sugar–phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J. Chem. Theory Comput. 2015;11:5723–5736. doi: 10.1021/acs.jctc.5b00716. PubMed DOI
Pérez A, et al. Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys. J. 2007;92:3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC
Krepl M, et al. Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012;8:2506–2520. doi: 10.1021/ct300275s. PubMed DOI PMC
Zgarbová M, et al. Toward improved description of DNA backbone: revisiting epsilon and zeta torsion force field parameters. J. Chem. Theory Comput. 2013;9:2339–2354. doi: 10.1021/ct400154j. PubMed DOI PMC
Cornell WD, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995;117:5179–5197. doi: 10.1021/ja00124a002. DOI
Hopkins CW, Le Grand S, Walker RC, Roitberg AE. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI
Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Computational Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Case, D. A. et al. AMBER 2016 (2016).
Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science. 2014;344:1492–1496. doi: 10.1126/science.1242072. PubMed DOI
Bottaro S, Di Palma F, Bussi G. The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Res. 2014;42:13306–13314. doi: 10.1093/nar/gku972. PubMed DOI PMC
Götz AW, Clark MA, Walker RC. An extensible interface for QM/MM molecular dynamics simulations with AMBER. J. Comput. Chem. 2014;35:95–108. doi: 10.1002/jcc.23444. PubMed DOI PMC
Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989;162:165–169. doi: 10.1016/0009-2614(89)85118-8. DOI
Grimme S, Brandenburg JG, Bannwarth C, Hansen A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 2015;143:054107. doi: 10.1063/1.4927476. PubMed DOI
Szabla R, Havrila M, Kruse H, Šponer J. Comparative assessment of different RNA tetranucleotides from the DFT-D3 and force field perspective. J. Phys. Chem. B. 2016;120:10635–10648. doi: 10.1021/acs.jpcb.6b07551. PubMed DOI
Kruse H, Šponer J. Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions. Phys. Chem. Chem. Phys. 2014;17:1399–1410. doi: 10.1039/C4CP04680C. PubMed DOI
Eckert F, Pulay P, Werner H-J. Ab initio geometry optimization for large molecules. J. Comput. Chem. 1997;18:1473–1483. doi: 10.1002/(SICI)1096-987X(199709)18:12<1473::AID-JCC5>3.0.CO;2-G. DOI
Trofimov AB, Schirmer J. An efficient polarization propagator approach to valence electron excitation spectra. J. Phys. B: Mol. Opt. Phys. 1995;28:2299–2324. doi: 10.1088/0953-4075/28/12/003. DOI
Plasser F, Bäppler SA, Wormit M, Dreuw A. New tools for the systematic analysis and visualization of electronic excitations. II. Applications. J. Chem. Phys. 2014;141:024107. doi: 10.1063/1.4885820. PubMed DOI
Plasser F, Wormit M, Dreuw A. New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J. Chem. Phys. 2014;141:024106. doi: 10.1063/1.4885819. PubMed DOI
Levine BG, Coe JD, Martínez TJ. Optimizing conical intersections without derivative coupling vectors: application to multistate multireference second-order perturbation theory (MS-CASPT2) J. Phys. Chem. B. 2008;112:405–413. doi: 10.1021/jp0761618. PubMed DOI
Tuna D, et al. Assessment of approximate coupled-cluster and algebraic-diagrammatic-construction methods for ground- and excited-state reaction paths and the conical-intersection seam of a retinal-chromophore model. J. Chem. Theory Comput. 2015;11:5758–5781. doi: 10.1021/acs.jctc.5b00022. PubMed DOI
Szabla R, W. Góra R, Šponer J. Ultrafast excited-state dynamics of isocytosine. Phys. Chem. Chem. Phys. 2016;18:20208–20218. doi: 10.1039/C6CP01391K. PubMed DOI
Ribose Alters the Photochemical Properties of the Nucleobase in Thionated Nucleosides
figshare
10.6084/m9.figshare.14268056