Photoinduced charge separation and DNA self-repair depend on sequence directionality and stacking pattern

. 2024 Feb 07 ; 15 (6) : 2158-2166. [epub] 20231228

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38332835

Charge separation is one of the most common consequences of the absorption of UV light by DNA. Recently, it has been shown that this process can enable efficient self-repair of cyclobutane pyrimidine dimers (CPDs) in specific short DNA oligomers such as the GAT[double bond, length as m-dash]T sequence. The mechanism was characterized as sequential electron transfer through the nucleobase stack which is controlled by the redox potentials of nucleobases and their sequence. Here, we demonstrate that the inverse sequence T[double bond, length as m-dash]TAG promotes self-repair with higher quantum yields (0.58 ± 0.23%) than GAT[double bond, length as m-dash]T (0.44 ± 0.18%) in a comparative study involving UV-irradiation experiments. After extended exposure to UV irradiation, a photostationary equilibrium between self-repair and damage formation is reached at 33 ± 13% for GAT[double bond, length as m-dash]T and at 40 ± 16% for T[double bond, length as m-dash]TAG, which corresponds to the maximum total yield of self-repair. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) simulations allowed us to assign this disparity to better stacking overlap between the G and A bases, which lowers the energies of the key A-˙G+˙ charge transfer state in the dominant conformers of the T[double bond, length as m-dash]TAG tetramer. These conformational differences also hinder alternative photorelaxation pathways of the T[double bond, length as m-dash]TAG tetranucleotide, which otherwise compete with the sequential electron transfer mechanism responsible for CPD self-repair. Overall, we demonstrate that photoinduced electron transfer is strongly dependent on conformation and the availability of alternative photodeactivation mechanisms. This knowledge can be used in the identification and prediction of canonical and modified DNA sequences exhibiting efficient electron transfer. It also further contributes to our understanding of DNA self-repair and its potential role in the photochemical selection of the most photostable sequences on the early Earth.

Zobrazit více v PubMed

Bucher D. B. Pilles B. M. Carell T. Zinth W. Proc. Natl. Acad. Sci. U. S. A. 2014;111:4369–4374. doi: 10.1073/pnas.1323700111. PubMed DOI PMC

Genereux J. C. Barton J. K. Chem. Rev. 2010;110:1642–1662. doi: 10.1021/cr900228f. PubMed DOI PMC

Grodick M. A. Muren N. B. Barton J. K. Biochemistry. 2015;54:962–973. doi: 10.1021/bi501520w. PubMed DOI PMC

Guo C. Wang K. Zerah-Harush E. Hamill J. Wang B. Dubi Y. Xu B. Nat. Chem. 2016;8:484–490. doi: 10.1038/nchem.2480. PubMed DOI

Hart S. M. Banal J. L. Castellanos M. A. Markova L. Vyborna Y. Gorman J. Häner R. Willard A. P. Bathe M. Schlau-Cohen G. S. Chem. Sci. 2022;13:13020–13031. doi: 10.1039/D2SC02759C. PubMed DOI PMC

Crespo-Hernández C. E. Cohen B. Kohler B. Nature. 2005;436:1141–1144. doi: 10.1038/nature03933. PubMed DOI

Buchvarov I. Wang Q. Raytchev M. Trifonov A. Fiebig T. Proc. Natl. Acad. Sci. U. S. A. 2007;104:4794–4797. doi: 10.1073/pnas.0606757104. PubMed DOI PMC

Middleton C. T. Harpe K. d. L. Su C. Law Y. K. Crespo-Hernández C. E. Kohler B. Annu. Rev. Phys. Chem. 2009;60:217–239. doi: 10.1146/annurev.physchem.59.032607.093719. PubMed DOI

Su C. Middleton C. T. Kohler B. J. Phys. Chem. B. 2012;116:10266–10274. doi: 10.1021/jp305350t. PubMed DOI

Zhang Y. Dood J. Beckstead A. A. Li X.-B. Nguyen K. V. Burrows C. J. Improta R. Kohler B. J. Phys. Chem. B. 2015;119:7491–7502. doi: 10.1021/jp511220x. PubMed DOI

Spata V. A. Lee W. Matsika S. J. Phys. Chem. Lett. 2016;7:976–984. doi: 10.1021/acs.jpclett.5b02756. PubMed DOI

Lewis F. D. Young R. M. Wasielewski M. R. Acc. Chem. Res. 2018;51:1746–1754. doi: 10.1021/acs.accounts.8b00090. PubMed DOI

Duchi M. O'Hagan M. P. Kumar R. Bennie S. J. Galan M. C. Curchod B. F. E. Oliver T. A. A. Phys. Chem. Chem. Phys. 2019;21:14407–14417. doi: 10.1039/C8CP07864E. PubMed DOI

Kufner C. L. Zinth W. Bucher D. B. ChemBioChem. 2020;21:2306–2310. doi: 10.1002/cbic.202000103. PubMed DOI PMC

Kufner C. L. Bucher D. B. Sasselov D. D. ChemSystemsChem. 2023;5:e202200019. doi: 10.1002/syst.202200019. DOI

Lee W. Matsika S. J. Phys. Chem. B. 2023;127:18–25. doi: 10.1021/acs.jpcb.2c06680. PubMed DOI

Douki T. Court M. Sauvaigo S. Odin F. Cadet J. J. Biol. Chem. 2000;275:11678–11685. doi: 10.1074/jbc.275.16.11678. PubMed DOI

Schreier W. J. Schrader T. E. Koller F. O. Gilch P. Crespo-Hernández C. E. Swaminathan V. N. Carell T. Zinth W. Kohler B. Science. 2007;315:625–629. doi: 10.1126/science.1135428. PubMed DOI PMC

Schreier W. J. Kubon J. Regner N. Haiser K. Schrader T. E. Zinth W. Clivio P. Gilch P. J. Am. Chem. Soc. 2009;131:5038–5039. doi: 10.1021/ja900436t. PubMed DOI

Rauer C. Nogueira J. J. Marquetand P. González L. J. Am. Chem. Soc. 2016;138:15911–15916. doi: 10.1021/jacs.6b06701. PubMed DOI

Pagès V. Fuchs R. P. Oncogene. 2002;21:8957–8966. doi: 10.1038/sj.onc.1206006. PubMed DOI

Sinha R. P. Häder D.-P. Photochem. Photobiol. Sci. 2002;1:225–236. doi: 10.1039/b201230h. PubMed DOI

Mees A. Klar T. Gnau P. Hennecke U. Eker A. P. M. Carell T. Essen L.-O. Science. 2004;306:1789–1793. doi: 10.1126/science.1101598. PubMed DOI

Lee W. Kodali G. Stanley R. J. Matsika S. Chem.–Eur. J. 2016;22:11371–11381. doi: 10.1002/chem.201600656. PubMed DOI

Zhang M. Wang L. Shu S. Sancar A. Zhong D. Science. 2016;354:209–213. doi: 10.1126/science.aah6071. PubMed DOI PMC

Zhang M. Wang L. Zhong D. Arch. Biochem. Biophys. 2017;632:158–174. doi: 10.1016/j.abb.2017.08.007. PubMed DOI PMC

Tan C. Liu Z. Li J. Guo X. Wang L. Sancar A. Zhong D. Nat. Commun. 2015;6:7302. doi: 10.1038/ncomms8302. PubMed DOI

Chinnapen D. J.-F. Sen D. Proc. Natl. Acad. Sci. U. S. A. 2004;101:65–69. doi: 10.1073/pnas.0305943101. PubMed DOI PMC

Holman M. R. Ito T. Rokita S. E. J. Am. Chem. Soc. 2007;129:6–7. doi: 10.1021/ja0668365. PubMed DOI

Pan Z. Chen J. Schreier W. J. Kohler B. Lewis F. D. J. Phys. Chem. B. 2012;116:698–704. doi: 10.1021/jp210575g. PubMed DOI

Szabla R. Zdrowowicz M. Spisz P. Green N. J. Stadlbauer P. Kruse H. Šponer J. Rak J. Nat. Commun. 2021;12:3018. doi: 10.1038/s41467-021-23300-y. PubMed DOI PMC

Nguyen K. V. Burrows C. J. J. Am. Chem. Soc. 2011;133:14586–14589. doi: 10.1021/ja2072252. PubMed DOI

Bucher D. B. Kufner C. L. Schlueter A. Carell T. Zinth W. J. Am. Chem. Soc. 2016;138:186–190. doi: 10.1021/jacs.5b09753. PubMed DOI

Piccinni V. Reiter S. Keefer D. de Vivie-Riedle R. J. Phys. Chem. A. 2020;124:9133–9140. doi: 10.1021/acs.jpca.0c07207. PubMed DOI

Szabla R. Kruse H. Stadlbauer P. Šponer J. Sobolewski A. L. Chem. Sci. 2018;9:3131–3140. doi: 10.1039/C8SC00024G. PubMed DOI PMC

Beckstead A. A. Zhang Y. Vries M. S. d. Kohler B. Phys. Chem. Chem. Phys. 2016;18:24228–24238. doi: 10.1039/C6CP04230A. PubMed DOI

Kufner C. L. Krebs S. Fischaleck M. Philippou-Massier J. Blum H. Bucher D. B. Braun D. Zinth W. Mast C. B. Sci. Rep. 2023;13:2638. doi: 10.1038/s41598-023-29833-0. PubMed DOI PMC

Ranjan S. Sasselov D. D. Astrobiology. 2016;16:68–88. doi: 10.1089/ast.2015.1359. PubMed DOI

Ranjan S. Sasselov D. D. Astrobiology. 2017;17:169–204. doi: 10.1089/ast.2016.1519. PubMed DOI

Xu J. Tsanakopoulou M. Magnani C. J. Szabla R. Šponer J. E. Šponer J. Góra R. W. Sutherland J. D. Nat. Chem. 2017;9:303–309. doi: 10.1038/nchem.2664. PubMed DOI PMC

Roberts S. J. Szabla R. Todd Z. R. Stairs S. Bučar D.-K. Šponer J. Sasselov D. D. Powner M. W. Nat. Commun. 2018;9:4073. doi: 10.1038/s41467-018-06374-z. PubMed DOI PMC

Xu J. Chmela V. Green N. J. Russell D. A. Janicki M. J. Góra R. W. Szabla R. Bond A. D. Sutherland J. D. Nature. 2020;582:60–66. doi: 10.1038/s41586-020-2330-9. PubMed DOI PMC

Colville B. W. F. Powner M. W. Angew. Chem. 2021;133:10620–10624. doi: 10.1002/ange.202101376. PubMed DOI PMC

Xu J. Green N. J. Russell D. A. Liu Z. Sutherland J. D. J. Am. Chem. Soc. 2021;143:14482–14486. doi: 10.1021/jacs.1c07403. PubMed DOI PMC

Green N. J. Xu J. Sutherland J. D. J. Am. Chem. Soc. 2021;143:7219–7236. doi: 10.1021/jacs.1c01839. PubMed DOI PMC

Szabla R., in Prebiotic Photochemistry: From Urey–Miller-like Experiments to Recent Findings, ed. F. Saija and G. Cassone, The Royal Society of Chemistry, 2021, ch. 5, pp. 79–106

Anusiewicz I. Świerszcz I. Skurski P. Simons J. J. Phys. Chem. A. 2013;117:1240–1253. doi: 10.1021/jp305561u. PubMed DOI

Lee W. Matsika S. Faraday Discuss. 2019;216:507–519. doi: 10.1039/C8FD00184G. PubMed DOI

Dreuw A. Wormit M. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015;5:82–95.

Hättig C., Advances in Quantum Chemistry, Academic Press, 2005, vol. 50, pp. 37–60

Johns H. E. Rapaport S. A. Delbrück M. J. Mol. Biol. 1962;4:104–114. doi: 10.1016/S0022-2836(62)80042-4. PubMed DOI

Schreier W. J. Gilch P. Zinth W. Annu. Rev. Phys. Chem. 2015;66:497–519. doi: 10.1146/annurev-physchem-040214-121821. PubMed DOI

Kufner C. L., PhD thesis, Ludwig-Maximilians-Universität München, 2018

Crucilla S. J. Ding D. Lozano G. G. Szostak J. W. Sasselov D. D. Kufner C. L. Chem. Commun. 2023;59:13603–13606. doi: 10.1039/D3CC04013E. PubMed DOI

Petropoulos V. Uboldi L. Maiuri M. Cerullo G. Martinez-Fernandez L. Balanikas E. Markovitsi D. J. Phys. Chem. Lett. 2023;14:10219–10224. doi: 10.1021/acs.jpclett.3c02580. PubMed DOI

Masson F. Laino T. Tavernelli I. Rothlisberger U. Hutter J. J. Am. Chem. Soc. 2008;130:3443–3450. doi: 10.1021/ja076081h. PubMed DOI

Huang D. Chen S. Pu J. Tan X. Zhou Y. J. Phys. Chem. A. 2019;123:2025–2039. doi: 10.1021/acs.jpca.8b12345. PubMed DOI

Bauer B. Sharma R. Chergui M. Oppermann M. Chem. Sci. 2022;13:5230–5242. doi: 10.1039/D1SC06450A. PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.24711825

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...