Photoinduced charge separation and DNA self-repair depend on sequence directionality and stacking pattern
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38332835
PubMed Central
PMC10848779
DOI
10.1039/d3sc04971j
PII: d3sc04971j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Charge separation is one of the most common consequences of the absorption of UV light by DNA. Recently, it has been shown that this process can enable efficient self-repair of cyclobutane pyrimidine dimers (CPDs) in specific short DNA oligomers such as the GAT[double bond, length as m-dash]T sequence. The mechanism was characterized as sequential electron transfer through the nucleobase stack which is controlled by the redox potentials of nucleobases and their sequence. Here, we demonstrate that the inverse sequence T[double bond, length as m-dash]TAG promotes self-repair with higher quantum yields (0.58 ± 0.23%) than GAT[double bond, length as m-dash]T (0.44 ± 0.18%) in a comparative study involving UV-irradiation experiments. After extended exposure to UV irradiation, a photostationary equilibrium between self-repair and damage formation is reached at 33 ± 13% for GAT[double bond, length as m-dash]T and at 40 ± 16% for T[double bond, length as m-dash]TAG, which corresponds to the maximum total yield of self-repair. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) simulations allowed us to assign this disparity to better stacking overlap between the G and A bases, which lowers the energies of the key A-˙G+˙ charge transfer state in the dominant conformers of the T[double bond, length as m-dash]TAG tetramer. These conformational differences also hinder alternative photorelaxation pathways of the T[double bond, length as m-dash]TAG tetranucleotide, which otherwise compete with the sequential electron transfer mechanism responsible for CPD self-repair. Overall, we demonstrate that photoinduced electron transfer is strongly dependent on conformation and the availability of alternative photodeactivation mechanisms. This knowledge can be used in the identification and prediction of canonical and modified DNA sequences exhibiting efficient electron transfer. It also further contributes to our understanding of DNA self-repair and its potential role in the photochemical selection of the most photostable sequences on the early Earth.
Department of Chemistry and Chemical Biology Harvard University Cambridge Massachusetts 02138 USA
Department of Chemistry The University of Chicago Chicago Illinois 60637 USA
Department of Earth and Planetary Sciences Harvard University Cambridge Massachusetts 02138 USA
Howard Hughes Medical Institute The University of Chicago Chicago IL 60637 USA
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61200 Brno Czech Republic
Zobrazit více v PubMed
Bucher D. B. Pilles B. M. Carell T. Zinth W. Proc. Natl. Acad. Sci. U. S. A. 2014;111:4369–4374. doi: 10.1073/pnas.1323700111. PubMed DOI PMC
Genereux J. C. Barton J. K. Chem. Rev. 2010;110:1642–1662. doi: 10.1021/cr900228f. PubMed DOI PMC
Grodick M. A. Muren N. B. Barton J. K. Biochemistry. 2015;54:962–973. doi: 10.1021/bi501520w. PubMed DOI PMC
Guo C. Wang K. Zerah-Harush E. Hamill J. Wang B. Dubi Y. Xu B. Nat. Chem. 2016;8:484–490. doi: 10.1038/nchem.2480. PubMed DOI
Hart S. M. Banal J. L. Castellanos M. A. Markova L. Vyborna Y. Gorman J. Häner R. Willard A. P. Bathe M. Schlau-Cohen G. S. Chem. Sci. 2022;13:13020–13031. doi: 10.1039/D2SC02759C. PubMed DOI PMC
Crespo-Hernández C. E. Cohen B. Kohler B. Nature. 2005;436:1141–1144. doi: 10.1038/nature03933. PubMed DOI
Buchvarov I. Wang Q. Raytchev M. Trifonov A. Fiebig T. Proc. Natl. Acad. Sci. U. S. A. 2007;104:4794–4797. doi: 10.1073/pnas.0606757104. PubMed DOI PMC
Middleton C. T. Harpe K. d. L. Su C. Law Y. K. Crespo-Hernández C. E. Kohler B. Annu. Rev. Phys. Chem. 2009;60:217–239. doi: 10.1146/annurev.physchem.59.032607.093719. PubMed DOI
Su C. Middleton C. T. Kohler B. J. Phys. Chem. B. 2012;116:10266–10274. doi: 10.1021/jp305350t. PubMed DOI
Zhang Y. Dood J. Beckstead A. A. Li X.-B. Nguyen K. V. Burrows C. J. Improta R. Kohler B. J. Phys. Chem. B. 2015;119:7491–7502. doi: 10.1021/jp511220x. PubMed DOI
Spata V. A. Lee W. Matsika S. J. Phys. Chem. Lett. 2016;7:976–984. doi: 10.1021/acs.jpclett.5b02756. PubMed DOI
Lewis F. D. Young R. M. Wasielewski M. R. Acc. Chem. Res. 2018;51:1746–1754. doi: 10.1021/acs.accounts.8b00090. PubMed DOI
Duchi M. O'Hagan M. P. Kumar R. Bennie S. J. Galan M. C. Curchod B. F. E. Oliver T. A. A. Phys. Chem. Chem. Phys. 2019;21:14407–14417. doi: 10.1039/C8CP07864E. PubMed DOI
Kufner C. L. Zinth W. Bucher D. B. ChemBioChem. 2020;21:2306–2310. doi: 10.1002/cbic.202000103. PubMed DOI PMC
Kufner C. L. Bucher D. B. Sasselov D. D. ChemSystemsChem. 2023;5:e202200019. doi: 10.1002/syst.202200019. DOI
Lee W. Matsika S. J. Phys. Chem. B. 2023;127:18–25. doi: 10.1021/acs.jpcb.2c06680. PubMed DOI
Douki T. Court M. Sauvaigo S. Odin F. Cadet J. J. Biol. Chem. 2000;275:11678–11685. doi: 10.1074/jbc.275.16.11678. PubMed DOI
Schreier W. J. Schrader T. E. Koller F. O. Gilch P. Crespo-Hernández C. E. Swaminathan V. N. Carell T. Zinth W. Kohler B. Science. 2007;315:625–629. doi: 10.1126/science.1135428. PubMed DOI PMC
Schreier W. J. Kubon J. Regner N. Haiser K. Schrader T. E. Zinth W. Clivio P. Gilch P. J. Am. Chem. Soc. 2009;131:5038–5039. doi: 10.1021/ja900436t. PubMed DOI
Rauer C. Nogueira J. J. Marquetand P. González L. J. Am. Chem. Soc. 2016;138:15911–15916. doi: 10.1021/jacs.6b06701. PubMed DOI
Pagès V. Fuchs R. P. Oncogene. 2002;21:8957–8966. doi: 10.1038/sj.onc.1206006. PubMed DOI
Sinha R. P. Häder D.-P. Photochem. Photobiol. Sci. 2002;1:225–236. doi: 10.1039/b201230h. PubMed DOI
Mees A. Klar T. Gnau P. Hennecke U. Eker A. P. M. Carell T. Essen L.-O. Science. 2004;306:1789–1793. doi: 10.1126/science.1101598. PubMed DOI
Lee W. Kodali G. Stanley R. J. Matsika S. Chem.–Eur. J. 2016;22:11371–11381. doi: 10.1002/chem.201600656. PubMed DOI
Zhang M. Wang L. Shu S. Sancar A. Zhong D. Science. 2016;354:209–213. doi: 10.1126/science.aah6071. PubMed DOI PMC
Zhang M. Wang L. Zhong D. Arch. Biochem. Biophys. 2017;632:158–174. doi: 10.1016/j.abb.2017.08.007. PubMed DOI PMC
Tan C. Liu Z. Li J. Guo X. Wang L. Sancar A. Zhong D. Nat. Commun. 2015;6:7302. doi: 10.1038/ncomms8302. PubMed DOI
Chinnapen D. J.-F. Sen D. Proc. Natl. Acad. Sci. U. S. A. 2004;101:65–69. doi: 10.1073/pnas.0305943101. PubMed DOI PMC
Holman M. R. Ito T. Rokita S. E. J. Am. Chem. Soc. 2007;129:6–7. doi: 10.1021/ja0668365. PubMed DOI
Pan Z. Chen J. Schreier W. J. Kohler B. Lewis F. D. J. Phys. Chem. B. 2012;116:698–704. doi: 10.1021/jp210575g. PubMed DOI
Szabla R. Zdrowowicz M. Spisz P. Green N. J. Stadlbauer P. Kruse H. Šponer J. Rak J. Nat. Commun. 2021;12:3018. doi: 10.1038/s41467-021-23300-y. PubMed DOI PMC
Nguyen K. V. Burrows C. J. J. Am. Chem. Soc. 2011;133:14586–14589. doi: 10.1021/ja2072252. PubMed DOI
Bucher D. B. Kufner C. L. Schlueter A. Carell T. Zinth W. J. Am. Chem. Soc. 2016;138:186–190. doi: 10.1021/jacs.5b09753. PubMed DOI
Piccinni V. Reiter S. Keefer D. de Vivie-Riedle R. J. Phys. Chem. A. 2020;124:9133–9140. doi: 10.1021/acs.jpca.0c07207. PubMed DOI
Szabla R. Kruse H. Stadlbauer P. Šponer J. Sobolewski A. L. Chem. Sci. 2018;9:3131–3140. doi: 10.1039/C8SC00024G. PubMed DOI PMC
Beckstead A. A. Zhang Y. Vries M. S. d. Kohler B. Phys. Chem. Chem. Phys. 2016;18:24228–24238. doi: 10.1039/C6CP04230A. PubMed DOI
Kufner C. L. Krebs S. Fischaleck M. Philippou-Massier J. Blum H. Bucher D. B. Braun D. Zinth W. Mast C. B. Sci. Rep. 2023;13:2638. doi: 10.1038/s41598-023-29833-0. PubMed DOI PMC
Ranjan S. Sasselov D. D. Astrobiology. 2016;16:68–88. doi: 10.1089/ast.2015.1359. PubMed DOI
Ranjan S. Sasselov D. D. Astrobiology. 2017;17:169–204. doi: 10.1089/ast.2016.1519. PubMed DOI
Xu J. Tsanakopoulou M. Magnani C. J. Szabla R. Šponer J. E. Šponer J. Góra R. W. Sutherland J. D. Nat. Chem. 2017;9:303–309. doi: 10.1038/nchem.2664. PubMed DOI PMC
Roberts S. J. Szabla R. Todd Z. R. Stairs S. Bučar D.-K. Šponer J. Sasselov D. D. Powner M. W. Nat. Commun. 2018;9:4073. doi: 10.1038/s41467-018-06374-z. PubMed DOI PMC
Xu J. Chmela V. Green N. J. Russell D. A. Janicki M. J. Góra R. W. Szabla R. Bond A. D. Sutherland J. D. Nature. 2020;582:60–66. doi: 10.1038/s41586-020-2330-9. PubMed DOI PMC
Colville B. W. F. Powner M. W. Angew. Chem. 2021;133:10620–10624. doi: 10.1002/ange.202101376. PubMed DOI PMC
Xu J. Green N. J. Russell D. A. Liu Z. Sutherland J. D. J. Am. Chem. Soc. 2021;143:14482–14486. doi: 10.1021/jacs.1c07403. PubMed DOI PMC
Green N. J. Xu J. Sutherland J. D. J. Am. Chem. Soc. 2021;143:7219–7236. doi: 10.1021/jacs.1c01839. PubMed DOI PMC
Szabla R., in Prebiotic Photochemistry: From Urey–Miller-like Experiments to Recent Findings, ed. F. Saija and G. Cassone, The Royal Society of Chemistry, 2021, ch. 5, pp. 79–106
Anusiewicz I. Świerszcz I. Skurski P. Simons J. J. Phys. Chem. A. 2013;117:1240–1253. doi: 10.1021/jp305561u. PubMed DOI
Lee W. Matsika S. Faraday Discuss. 2019;216:507–519. doi: 10.1039/C8FD00184G. PubMed DOI
Dreuw A. Wormit M. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015;5:82–95.
Hättig C., Advances in Quantum Chemistry, Academic Press, 2005, vol. 50, pp. 37–60
Johns H. E. Rapaport S. A. Delbrück M. J. Mol. Biol. 1962;4:104–114. doi: 10.1016/S0022-2836(62)80042-4. PubMed DOI
Schreier W. J. Gilch P. Zinth W. Annu. Rev. Phys. Chem. 2015;66:497–519. doi: 10.1146/annurev-physchem-040214-121821. PubMed DOI
Kufner C. L., PhD thesis, Ludwig-Maximilians-Universität München, 2018
Crucilla S. J. Ding D. Lozano G. G. Szostak J. W. Sasselov D. D. Kufner C. L. Chem. Commun. 2023;59:13603–13606. doi: 10.1039/D3CC04013E. PubMed DOI
Petropoulos V. Uboldi L. Maiuri M. Cerullo G. Martinez-Fernandez L. Balanikas E. Markovitsi D. J. Phys. Chem. Lett. 2023;14:10219–10224. doi: 10.1021/acs.jpclett.3c02580. PubMed DOI
Masson F. Laino T. Tavernelli I. Rothlisberger U. Hutter J. J. Am. Chem. Soc. 2008;130:3443–3450. doi: 10.1021/ja076081h. PubMed DOI
Huang D. Chen S. Pu J. Tan X. Zhou Y. J. Phys. Chem. A. 2019;123:2025–2039. doi: 10.1021/acs.jpca.8b12345. PubMed DOI
Bauer B. Sharma R. Chergui M. Oppermann M. Chem. Sci. 2022;13:5230–5242. doi: 10.1039/D1SC06450A. PubMed DOI PMC
figshare
10.6084/m9.figshare.24711825