A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28338689
PubMed Central
PMC5576532
DOI
10.1038/nchem.2664
PII: nchem.2664
Knihovny.cz E-zdroje
- MeSH
- evoluce chemická * MeSH
- fosfáty chemická syntéza chemie MeSH
- fotochemické procesy * MeSH
- molekulární konformace MeSH
- oxazoly chemie MeSH
- pyrimidiny chemická syntéza chemie MeSH
- ribonukleosidy chemická syntéza chemie MeSH
- ribosa chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfáty MeSH
- oxazoly MeSH
- pyrimidine MeSH Prohlížeč
- pyrimidiny MeSH
- ribonukleosidy MeSH
- ribosa MeSH
Previous research has identified ribose aminooxazoline as a potential intermediate in the prebiotic synthesis of the pyrimidine nucleotides with remarkable properties. It crystallizes spontaneously from reaction mixtures, with an enhanced enantiomeric excess if initially enantioenriched, which suggests that reservoirs of this compound might have accumulated on the early Earth in an optically pure form. Ribose aminooxazoline can be converted efficiently into α-ribocytidine by way of 2,2'-anhydroribocytidine, although anomerization to β-ribocytidine by ultraviolet irradiation is extremely inefficient. Our previous work demonstrated the synthesis of pyrimidine β-ribonucleotides, but at the cost of ignoring ribose aminooxazoline, using arabinose aminooxazoline instead. Here we describe a long-sought route through ribose aminooxazoline to the pyrimidine β-ribonucleosides and their phosphate derivatives that involves an extraordinarily efficient photoanomerization of α-2-thioribocytidine. In addition to the canonical nucleosides, our synthesis accesses β-2-thioribouridine, a modified nucleoside found in transfer RNA that enables both faster and more-accurate nucleic acid template-copying chemistry.
Zobrazit více v PubMed
Sanchez RA, Orgel LE. Studies in prebiotic synthesis. Synthesis and photoanomerization of pyrimidine nucleosides. J Mol Biol. 1970;47:531–543. PubMed
Powner MW, et al. On the prebiotic synthesis of ribonucleotides: photoanomerisation of cytosine nucleosides and nucleotides revisited. ChemBioChem. 2007;8:1170–1179. PubMed
Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–242. PubMed
Anastasi C, Crowe MA, Powner MW, Sutherland JD. Direct assembly of nucleoside precursors from two- and three-carbon units. Angew Chem Int Ed. 2006;45:6176–6179. PubMed
Powner MW, Sutherland JD. Phosphate-mediated interconversion of ribo- and arabino-configured prebiotic nucleotide intermediates. Angew Chem Int Ed. 2010;49:4641–4643. PubMed
Ritson D, Sutherland JD. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nature Chem. 2012;4:895–899. PubMed PMC
Ritson DJ, Sutherland JD. Synthesis of aldehydic ribonucleotide and amino acid precursors by photoredox chemistry. Angew Chem Int Ed. 2013;52:5845–5847. PubMed PMC
Kawaguchi T, et al. Enzymatic reactivity and anti-tumor activity of 1-(β-D-arabinofuranosyl)-2-thiocytosine derivatives. Chem Pharm Bull. 2000;48:454–457. PubMed
Frick L, Mac Neela JP, Wolfenden R. Transition state stabilization by deaminases: rates of nonenzymatic hydrolysis of adenosine and cytidine. Bioorg Chem. 1987;15:100–108.
Schoffstall AM. Prebiotic phosphorylation of nucleosides in formamide. Orig Life. 1976;7:399–412. PubMed
Lohrmann R, Orgel LE. Urea-inorganic phosphate mixtures as prebiotic phosphorylating agents. Science. 1971;171:490–494. PubMed
Saenger W. Principles of Nucleic Acid Structure. Springer-Verlag; New York: 1984.
Brown DJ, Jacobsen NW. 612. Pyrimidine reactions. Part IV. The methylation of 2,4- and 4,5-diaminopyrimidine and related compounds. J Chem Soc (Resumed) 1962:3172–3179.
Szabla R, et al. Excited-state hydrogen atom abstraction initiates the photochemistry of β-2′-deoxycytidine. Chem Sci. 2015;6:2035–2043. PubMed PMC
Mai S, Marquetand P, González L. Intersystem crossing pathways in the noncanonical nucleobase 2-thiouracil: A time-dependent picture. J Phys Chem Lett. 2016;7:1978–1983. PubMed PMC
Martínez-Fernández L, Corral I, Granucci G, Persico M. Competing ultrafast intersystem crossing and internal conversion: a time resolved picture for the deactivation of 6-thioguanine. Chem Sci. 2014;5:1336–1347.
Pollum M, Crespo-Hernández CE. The dark singlet state as a doorway state in the ultrafast and efficient intersystem crossing dynamics in 2-thiothymine and 2 thiouracil. J Chem Phys. 2014;140:071101. PubMed
Taras-Goślińska K, Burdziński G, Wenska G. Relaxation of the T1 excited state of 2-thiothymine, its riboside and deoxyriboside-enhanced nonradiative decay rate induced by sugar substituent. J Photochem Photobiol Chem. 2014;275:89–95.
Gobbo JP, Borin AC. 2-Thiouracil deactivation pathways and triplet states population. Comput Theor Chem. 2014;1040:195–201.
Mai S, Marquetand P, González L. A static picture of the relaxation and intersystem crossing mechanisms of photoexcited 2-thiouracil. J Phys Chem A. 2015;119:9524–9533. PubMed PMC
Besley NA, Hirst JD. Ab initio study of the electronic spectrum of formamide with explicit solvent. J Am Chem Soc. 1999;121:8559–8566.
Joyce GF, Schwartz AW, Miller SL, Orgel LE. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci USA. 1987;84:4398–4402. PubMed PMC
Grosjean H, de Crécy-Lagard V, Marck C. Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett. 2010;584:252–264. PubMed
Heuberger BD, Pal A, Del Frate F, Topkar VV, Szostak JW. Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension. J Am Chem Soc. 2015;137:2769–2775. PubMed PMC
Preferential survival of prebiotic metallopeptides in the presence of ultraviolet light
Ribose Alters the Photochemical Properties of the Nucleobase in Thionated Nucleosides
2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions
Rewarming the Primordial Soup: Revisitations and Rediscoveries in Prebiotic Chemistry
Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context
PubChem-Substance
318488390, 318488401, 318488407, 318488408, 318488409, 318488410, 318488411, 318488412, 318488413, 318488391, 318488392, 318488393, 318488394, 318488395, 318488396, 318488397, 318488398, 318488399, 318488400, 318488402, 318488403, 318488404, 318488405, 318488406