Excited-state hydrogen atom abstraction initiates the photochemistry of β-2'-deoxycytidine
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
MC_UP_A024_1009
Medical Research Council - United Kingdom
PubMed
27182431
PubMed Central
PMC4866440
DOI
10.1039/c4sc03761h
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Understanding the effects of ultraviolet radiation on nucleotides in solution is an important step towards a comprehensive description of the photochemistry of nucleic acids and their constituents. Apart from having implications for mutagenesis and DNA photoprotection mechanisms, the photochemistry of cytidines is a central element in UV-assisted syntheses of pyrimidine nucleotides under prebiotically plausible conditions. In this contribution, we present UV-irradiation experiments of β-2'-deoxycytidine in aqueous solution involving H-D exchange followed by NMR spectroscopic analysis of the photoproducts. We further elucidate the outcome of these experiments by means of high-level quantum chemical calculations. In particular, we show that prolonged UV-irradiation of cytidine may lead to H-C1' hydrogen atom abstraction by the carbonyl oxygen atom of cytosine. This process may enable photoanomerisation and nucleobase loss, two previously unexplained photoreactions observed in pyrimidine nucleotides.
Zobrazit více v PubMed
Schreier W. J., Schrader T. E., Koller F. O., Gilch P., Crespo-Hernández C. E., Swaminathan V. N., Carell T., Zinth W., Kohler B. Science. 2007;315:625–629. PubMed PMC
Yuan S., Zhang W., Liu L., Dou Y., Fang W., Lo G. V. J. Phys. Chem. A. 2011;115:13291–13297. PubMed
Cuquerella M. C., Lhiaubet-Vallet V., Bosca F., Miranda M. A. Chem. Sci. 2011;2:1219–1232.
Haiser K., Fingerhut B. P., Heil K., Glas A., Herzog T. T., Pilles B. M., Schreier W. J., Zinth W., de Vivie-Riedle R., Carell T. Angew. Chem., Int. Ed. 2012;51:408–411. PubMed
Barks H. L., Buckley R., Grieves G. A., Di Mauro E., Hud N. V., Orlando T. M. ChemBioChem. 2010;11:1240–1243. PubMed
Szabla R., Tuna D., Góra R. W., Šponer J., Sobolewski A. L., Domcke W. J. Phys. Chem. Lett. 2013;4:2785–2788.
Boulanger E., Anoop A., Nachtigallova D., Thiel W., Barbatti M. Angew. Chem., Int. Ed. 2013;125:8158–8161. PubMed
Szabla R., Góra R. W., Šponer J., Šponer J. E. Chem.–Eur. J. 2014;20:2515–2521. PubMed
Powner M. W., Anastasi C., Crowe M. A., Parkes A. L., Raftery J., Sutherland J. D. ChemBioChem. 2007;8:1170–1179. PubMed
Powner M. W., Sutherland J. D. ChemBioChem. 2008;9:2386–2387. PubMed
Sobolewski A. L., Domcke W. Europhys. News. 2006;37:20–23.
Barbatti M., Aquino A. J. A., Szymczak J. J., Nachtigallová D., Hobza P., Lischka H. Proc. Natl. Acad. Sci. U. S. A. 2010:21453–21458. PubMed PMC
Kleinermanns K., Nachtigallová D., de Vries M. S. Int. Rev. Phys. Chem. 2013;32:308–342.
Canuel C., Mons M., Piuzzi F., Tardivel B., Dimicoli I., Elhanine M. J. Chem. Phys. 2005;122:074316. PubMed
de Vries M. S., Hobza P. Annu. Rev. Phys. Chem. 2007;58:585–612. PubMed
Crespo-Hernández C. E., Cohen B., Hare P. M., Kohler B. Chem. Rev. 2004;104:1977–2020. PubMed
Saigusa H. J. Photochem. Photobiol., C. 2006;7:197–210.
Weinkauf R., Schermann J.-P., Vries M. S. d., Kleinermanns K. Eur. Phys. J. D. 2002;20:309–316.
Crespo-Hernández C. E., Kohler B. J. Phys. Chem. B. 2004;108:11182–11188.
Crespo-Hernández C. E., Cohen B., Kohler B. Nature. 2005;436:1141–1144. PubMed
Nir E., de Vries M. S. Int. J. Mass Spectrom. 2002;219:133–138.
Asami H., Yagi K., Ohba M., Urashima S.-H., Saigusa H. Chem. Phys. 2013;419:84–89.
Tuna D., Sobolewski A. L., Domcke W. J. Phys. Chem. A. 2014;118:122–127. PubMed
Powner M. W., Gerland B., Sutherland J. D. Nature. 2009;459:239–242. PubMed
Powner M., Sutherland J., Szostak J. Synlett. 2011:1956–1964.
Sanchez R. A., Orgel L. E. J. Mol. Biol. 1970;47:531–543. PubMed
Deboer G., Klinghoffer O., Johns H. E. Biochim. Biophys. Acta. 1970;213:253–268. PubMed
Liu F.-T., Yang N. C. Biochemistry. 1978;17:4877–4885. PubMed
Johns H. E., LeBlanc J. C., Freeman K. B. J. Mol. Biol. 1965;13:849–861.
Bach T., Hehn J. Angew. Chem., Int. Ed. 2011;50:1000–1045. PubMed
Makino B., Kawai M., Kito K., Yamamura H., Butsugan Y. Tetrahedron. 1995;51:12529–12538.
De Mayo P., Suau R. J. Am. Chem. Soc. 1974;96:6807–6809.
Zgierski M. Z., Alavi S. Chem. Phys. Lett. 2006;426:398–404.
Keane P. M., Wojdyla M., Doorley G. W., Watson G. W., Clark I. P., Greetham G. M., Parker A. W., Towrie M., Kelly J. M., Quinn S. J. J. Am. Chem. Soc. 2011;133:4212–4215. PubMed
Quinn S., Doorley G. W., Watson G. W., Cowan A. J., George M. W., Parker A. W., Ronayne K. L., Towrie M., Kelly J. M. Chem. Commun. 2007:2130–2132. PubMed
Keane P. M., Wojdyla M., Doorley G. W., Kelly J. M., Clark I. P., Parker A. W., Greetham G. M., Towrie M., Magno L. M., Quinn S. J. Phys. Chem. Chem. Phys. 2012;14:6307–6311. PubMed
Chatterley A. S., West C. W., Stavros V. G., Verlet J. R. R. Chem. Sci. 2014;5:3963–3975. PubMed
Hocquet A., Leulliot N., Ghomi M. J. Phys. Chem. B. 2000;104:4560–4568.
Shishkin O. V., Pelmenschikov A., Hovorun D. M., Leszczynski J. J. Mol. Struct. 2000;526:329–341.
Foloppe N., Nilsson L. J. Phys. Chem. B. 2005;109:9119–9131. PubMed
Plavec J., Thibaudeau C., Chattopadhyaya J. Pure Appl. Chem. 1996;68:2137–2144.
Hocquet A., Ghomi M. Phys. Chem. Chem. Phys. 2000;2:5351–5353.
Hocquet A. Phys. Chem. Chem. Phys. 2001;3:3192–3199.
Plavec J., Tong W., Chattopadhyaya J. J. Am. Chem. Soc. 1993;115:9734–9746.
Barbatti M., Aquino A. J. A., Szymczak J. J., Nachtigallová D., Lischka H. Phys. Chem. Chem. Phys. 2011;13:6145–6155. PubMed
González-Vázquez J., González L. ChemPhysChem. 2010;11:3617–3624. PubMed
Mai S., Marquetand P., Richter M., González-Vázquez J., González L. ChemPhysChem. 2013;14:2920–2931. PubMed
Yarkony D. R. Rev. Mod. Phys. 1996;68:985–1013.
Yarkony D. R. Acc. Chem. Res. 1998;31:511–518.
Henne A., Fischer H. Angew. Chem., Int. Ed. Engl. 1976;15:435.
Rabi J. A., Fox J. J. J. Am. Chem. Soc. 1973;95:1628–1632. PubMed
Zhao Y., Truhlar D. G. Theor. Chem. Acc. 2008;120:215–241.
Goerigk L., Grimme S. Phys. Chem. Chem. Phys. 2011;13:6670–6688. PubMed
Barone V., Cossi M. J. Phys. Chem. A. 1998;102:1995–2001.
Scalmani G., Frisch M. J. J. Chem. Phys. 2010;132:114110. PubMed
Tomasi J., Mennucci B., Cammi R. Chem. Rev. 2005;105:2999–3094. PubMed
Hättig C., Weigend F. J. Chem. Phys. 2000;113:5154–5161.
TURBOMOLE v6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007, 2011, http://www.turbomole.com.
Karlström G., Lindh R., Malmqvist P.-A., Roos B. O., Ryde U., Veryazov V., Widmark P.-O., Cossi M., Schimmelpfennig B., Neogrady P., Seijo L. Comput. Mater. Sci. 2003;28:222–239.
Aquilante F., De Vico L., Ferre N., Ghigo G., Malmqvist P.-A., Neogrady P., Pedersen T. B., Pitonak M., Reiher M., Roos B. O., Serrano-Andres L., Urban M., Veryazov V., Lindh R. J. Comput. Chem. 2010;31:224–247. PubMed
Lischka H., Müller T., Szalay P. G., Shavitt I., Pitzer R. M., Shepard R. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011;1:191–199.
Lischka H., Shepard R., Shavitt I., Pitzer R. M., Dallos M., Müller T., Szalay P. G., Brown F. B., Ahlrichs R., Böhm H. J., Chang A., Comeau D. C., Gdanitz R., Dachsel H., Ehrhardt C., Ernzerhof M., Höchtl P., Irle S., Kedziora G., Kovar T., Parasuk V., Pepper M. J. M., Scharf P., Schiffer H., Schindler M., Schüler M., Seth M., Stahlberg E. A., Zhao J.-G., Yabushita S., Zhang Z., Barbatti M., Matsika S., Schuurmann M., Yarkony D. R., Brozell S. R., Beck E. V., Blaudeau J.-P., Ruckenbauer M., Sellner B., Plasser F. and Szymczak J. J., COLUMBUS, release 7.0 2012, an ab initio electronic structure program, 2012, http://www.univie.ac.at/columbus.
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J. and Fox D. J., Gaussian 09, revision C.01, Gaussian Inc., Wallingford CT, 2009.