Excited-state hydrogen atom abstraction initiates the photochemistry of β-2'-deoxycytidine

. 2015 Jan 07 ; 6 (3) : 2035-2043.

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27182431

Grantová podpora
MC_UP_A024_1009 Medical Research Council - United Kingdom

Understanding the effects of ultraviolet radiation on nucleotides in solution is an important step towards a comprehensive description of the photochemistry of nucleic acids and their constituents. Apart from having implications for mutagenesis and DNA photoprotection mechanisms, the photochemistry of cytidines is a central element in UV-assisted syntheses of pyrimidine nucleotides under prebiotically plausible conditions. In this contribution, we present UV-irradiation experiments of β-2'-deoxycytidine in aqueous solution involving H-D exchange followed by NMR spectroscopic analysis of the photoproducts. We further elucidate the outcome of these experiments by means of high-level quantum chemical calculations. In particular, we show that prolonged UV-irradiation of cytidine may lead to H-C1' hydrogen atom abstraction by the carbonyl oxygen atom of cytosine. This process may enable photoanomerisation and nucleobase loss, two previously unexplained photoreactions observed in pyrimidine nucleotides.

Zobrazit více v PubMed

Schreier W. J., Schrader T. E., Koller F. O., Gilch P., Crespo-Hernández C. E., Swaminathan V. N., Carell T., Zinth W., Kohler B. Science. 2007;315:625–629. PubMed PMC

Yuan S., Zhang W., Liu L., Dou Y., Fang W., Lo G. V. J. Phys. Chem. A. 2011;115:13291–13297. PubMed

Cuquerella M. C., Lhiaubet-Vallet V., Bosca F., Miranda M. A. Chem. Sci. 2011;2:1219–1232.

Haiser K., Fingerhut B. P., Heil K., Glas A., Herzog T. T., Pilles B. M., Schreier W. J., Zinth W., de Vivie-Riedle R., Carell T. Angew. Chem., Int. Ed. 2012;51:408–411. PubMed

Barks H. L., Buckley R., Grieves G. A., Di Mauro E., Hud N. V., Orlando T. M. ChemBioChem. 2010;11:1240–1243. PubMed

Szabla R., Tuna D., Góra R. W., Šponer J., Sobolewski A. L., Domcke W. J. Phys. Chem. Lett. 2013;4:2785–2788.

Boulanger E., Anoop A., Nachtigallova D., Thiel W., Barbatti M. Angew. Chem., Int. Ed. 2013;125:8158–8161. PubMed

Szabla R., Góra R. W., Šponer J., Šponer J. E. Chem.–Eur. J. 2014;20:2515–2521. PubMed

Powner M. W., Anastasi C., Crowe M. A., Parkes A. L., Raftery J., Sutherland J. D. ChemBioChem. 2007;8:1170–1179. PubMed

Powner M. W., Sutherland J. D. ChemBioChem. 2008;9:2386–2387. PubMed

Sobolewski A. L., Domcke W. Europhys. News. 2006;37:20–23.

Barbatti M., Aquino A. J. A., Szymczak J. J., Nachtigallová D., Hobza P., Lischka H. Proc. Natl. Acad. Sci. U. S. A. 2010:21453–21458. PubMed PMC

Kleinermanns K., Nachtigallová D., de Vries M. S. Int. Rev. Phys. Chem. 2013;32:308–342.

Canuel C., Mons M., Piuzzi F., Tardivel B., Dimicoli I., Elhanine M. J. Chem. Phys. 2005;122:074316. PubMed

de Vries M. S., Hobza P. Annu. Rev. Phys. Chem. 2007;58:585–612. PubMed

Crespo-Hernández C. E., Cohen B., Hare P. M., Kohler B. Chem. Rev. 2004;104:1977–2020. PubMed

Saigusa H. J. Photochem. Photobiol., C. 2006;7:197–210.

Weinkauf R., Schermann J.-P., Vries M. S. d., Kleinermanns K. Eur. Phys. J. D. 2002;20:309–316.

Crespo-Hernández C. E., Kohler B. J. Phys. Chem. B. 2004;108:11182–11188.

Crespo-Hernández C. E., Cohen B., Kohler B. Nature. 2005;436:1141–1144. PubMed

Nir E., de Vries M. S. Int. J. Mass Spectrom. 2002;219:133–138.

Asami H., Yagi K., Ohba M., Urashima S.-H., Saigusa H. Chem. Phys. 2013;419:84–89.

Tuna D., Sobolewski A. L., Domcke W. J. Phys. Chem. A. 2014;118:122–127. PubMed

Powner M. W., Gerland B., Sutherland J. D. Nature. 2009;459:239–242. PubMed

Powner M., Sutherland J., Szostak J. Synlett. 2011:1956–1964.

Sanchez R. A., Orgel L. E. J. Mol. Biol. 1970;47:531–543. PubMed

Deboer G., Klinghoffer O., Johns H. E. Biochim. Biophys. Acta. 1970;213:253–268. PubMed

Liu F.-T., Yang N. C. Biochemistry. 1978;17:4877–4885. PubMed

Johns H. E., LeBlanc J. C., Freeman K. B. J. Mol. Biol. 1965;13:849–861.

Bach T., Hehn J. Angew. Chem., Int. Ed. 2011;50:1000–1045. PubMed

Makino B., Kawai M., Kito K., Yamamura H., Butsugan Y. Tetrahedron. 1995;51:12529–12538.

De Mayo P., Suau R. J. Am. Chem. Soc. 1974;96:6807–6809.

Zgierski M. Z., Alavi S. Chem. Phys. Lett. 2006;426:398–404.

Keane P. M., Wojdyla M., Doorley G. W., Watson G. W., Clark I. P., Greetham G. M., Parker A. W., Towrie M., Kelly J. M., Quinn S. J. J. Am. Chem. Soc. 2011;133:4212–4215. PubMed

Quinn S., Doorley G. W., Watson G. W., Cowan A. J., George M. W., Parker A. W., Ronayne K. L., Towrie M., Kelly J. M. Chem. Commun. 2007:2130–2132. PubMed

Keane P. M., Wojdyla M., Doorley G. W., Kelly J. M., Clark I. P., Parker A. W., Greetham G. M., Towrie M., Magno L. M., Quinn S. J. Phys. Chem. Chem. Phys. 2012;14:6307–6311. PubMed

Chatterley A. S., West C. W., Stavros V. G., Verlet J. R. R. Chem. Sci. 2014;5:3963–3975. PubMed

Hocquet A., Leulliot N., Ghomi M. J. Phys. Chem. B. 2000;104:4560–4568.

Shishkin O. V., Pelmenschikov A., Hovorun D. M., Leszczynski J. J. Mol. Struct. 2000;526:329–341.

Foloppe N., Nilsson L. J. Phys. Chem. B. 2005;109:9119–9131. PubMed

Plavec J., Thibaudeau C., Chattopadhyaya J. Pure Appl. Chem. 1996;68:2137–2144.

Hocquet A., Ghomi M. Phys. Chem. Chem. Phys. 2000;2:5351–5353.

Hocquet A. Phys. Chem. Chem. Phys. 2001;3:3192–3199.

Plavec J., Tong W., Chattopadhyaya J. J. Am. Chem. Soc. 1993;115:9734–9746.

Barbatti M., Aquino A. J. A., Szymczak J. J., Nachtigallová D., Lischka H. Phys. Chem. Chem. Phys. 2011;13:6145–6155. PubMed

González-Vázquez J., González L. ChemPhysChem. 2010;11:3617–3624. PubMed

Mai S., Marquetand P., Richter M., González-Vázquez J., González L. ChemPhysChem. 2013;14:2920–2931. PubMed

Yarkony D. R. Rev. Mod. Phys. 1996;68:985–1013.

Yarkony D. R. Acc. Chem. Res. 1998;31:511–518.

Henne A., Fischer H. Angew. Chem., Int. Ed. Engl. 1976;15:435.

Rabi J. A., Fox J. J. J. Am. Chem. Soc. 1973;95:1628–1632. PubMed

Zhao Y., Truhlar D. G. Theor. Chem. Acc. 2008;120:215–241.

Goerigk L., Grimme S. Phys. Chem. Chem. Phys. 2011;13:6670–6688. PubMed

Barone V., Cossi M. J. Phys. Chem. A. 1998;102:1995–2001.

Scalmani G., Frisch M. J. J. Chem. Phys. 2010;132:114110. PubMed

Tomasi J., Mennucci B., Cammi R. Chem. Rev. 2005;105:2999–3094. PubMed

Hättig C., Weigend F. J. Chem. Phys. 2000;113:5154–5161.

TURBOMOLE v6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007, 2011, http://www.turbomole.com.

Karlström G., Lindh R., Malmqvist P.-A., Roos B. O., Ryde U., Veryazov V., Widmark P.-O., Cossi M., Schimmelpfennig B., Neogrady P., Seijo L. Comput. Mater. Sci. 2003;28:222–239.

Aquilante F., De Vico L., Ferre N., Ghigo G., Malmqvist P.-A., Neogrady P., Pedersen T. B., Pitonak M., Reiher M., Roos B. O., Serrano-Andres L., Urban M., Veryazov V., Lindh R. J. Comput. Chem. 2010;31:224–247. PubMed

Lischka H., Müller T., Szalay P. G., Shavitt I., Pitzer R. M., Shepard R. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011;1:191–199.

Lischka H., Shepard R., Shavitt I., Pitzer R. M., Dallos M., Müller T., Szalay P. G., Brown F. B., Ahlrichs R., Böhm H. J., Chang A., Comeau D. C., Gdanitz R., Dachsel H., Ehrhardt C., Ernzerhof M., Höchtl P., Irle S., Kedziora G., Kovar T., Parasuk V., Pepper M. J. M., Scharf P., Schiffer H., Schindler M., Schüler M., Seth M., Stahlberg E. A., Zhao J.-G., Yabushita S., Zhang Z., Barbatti M., Matsika S., Schuurmann M., Yarkony D. R., Brozell S. R., Beck E. V., Blaudeau J.-P., Ruckenbauer M., Sellner B., Plasser F. and Szymczak J. J., COLUMBUS, release 7.0 2012, an ab initio electronic structure program, 2012, http://www.univie.ac.at/columbus.

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J. and Fox D. J., Gaussian 09, revision C.01, Gaussian Inc., Wallingford CT, 2009.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...