Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport

. 2019 Jul 02 ; 47 (W1) : W414-W422.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31114897

Caver Web 1.0 is a web server for comprehensive analysis of protein tunnels and channels, and study of the ligands' transport through these transport pathways. Caver Web is the first interactive tool allowing both the analyses within a single graphical user interface. The server is built on top of the abundantly used tunnel detection tool Caver 3.02 and CaverDock 1.0 enabling the study of the ligand transport. The program is easy-to-use as the only required inputs are a protein structure for a tunnel identification and a list of ligands for the transport analysis. The automated guidance procedures assist the users to set up the calculation in a way to obtain biologically relevant results. The identified tunnels, their properties, energy profiles and trajectories for ligands' passages can be calculated and visualized. The tool is very fast (2-20 min per job) and is applicable even for virtual screening purposes. Its simple setup and comprehensive graphical user interface make the tool accessible for a broad scientific community. The server is freely available at https://loschmidt.chemi.muni.cz/caverweb.

Zobrazit více v PubMed

Calland P.-Y. On the structural complexity of a protein. Protein Eng. Des. Sel. 2003; 16:79–86. PubMed

Kingsley L.J., Lill M.A.. Substrate tunnels in enzymes: Structure–function relationships and computational methodology. Proteins Struct. Funct. Bioinf. 2015; 83:599–611. PubMed PMC

Biedermannová L., Prokop Z., Gora A., Chovancová E., Kovács M., Damborský J., Wade R.C.. A single mutation in a tunnel to the active site changes the mechanism and kinetics of product release in haloalkane dehalogenase LinB. J. Biol. Chem. 2012; 287:29062–29074. PubMed PMC

Richards F.M. Protein stability: still an unsolved problem. Cell. Mol. Life Sci. 1997; 53:790–802. PubMed PMC

Kaushik S., Prokop Z., Damborsky J., Chaloupkova R.. Kinetics of binding of fluorescent ligands to enzymes with engineered access tunnels. FEBS J. 2017; 284:134–148. PubMed

Kaushik S., Marques S.M., Khirsariya P., Paruch K., Libichova L., Brezovsky J., Prokop Z., Chaloupkova R., Damborsky J.. Impact of the access tunnel engineering on catalysis is strictly ligand-specific. FEBS J. 2018; 285:1456–1476. PubMed

Brezovsky J., Babkova P., Degtjarik O., Fortova A., Gora A., Iermak I., Rezacova P., Dvorak P., Smatanova I.K., Prokop Z. et al. .. Engineering a de Novo Transport Tunnel. ACS Catal. 2016; 6:7597–7610.

Liskova V., Bednar D., Prudnikova T., Rezacova P., Koudelakova T., Sebestova E., Smatanova I.K., Brezovsky J., Chaloupkova R., Damborsky J.. Balancing the stability–activity trade-off by fine-tuning dehalogenase access tunnels. ChemCatChem. 2015; 7:648–659.

Schmidt M., Nienhaus K., Pahl R., Krasselt A., Anderson S., Parak F., Nienhaus G.U., Šrajer V.. Ligand migration pathway and protein dynamics in myoglobin: a time-resolved crystallographic study on L29W MbCO. Proc. Natl Acad. Sci. U.S.A. 2005; 102:11704–11709. PubMed PMC

Šrajer V., Ren Z., Teng T.-Y., Schmidt M., Ursby T., Bourgeois D., Pradervand C., Schildkamp W., Wulff M., Moffat K.. Protein conformational relaxation and ligand migration in myoglobin: a nanosecond to millisecond molecular movie from Time-Resolved laue X-ray diffraction. Biochemistry. 2001; 40:13802–13815. PubMed

Brezovsky J., Chovancova E., Gora A., Pavelka A., Biedermannova L., Damborsky J.. Software tools for identification, visualization and analysis of protein tunnels and channels. Biotechnol. Adv. 2013; 31:38–49. PubMed

Pellegrini-Calace M., Maiwald T., Thornton J.M.. PoreWalker: a novel tool for the identification and characterization of channels in transmembrane proteins from their Three-Dimensional structure. PLoS Comput. Biol. 2009; 5:e1000440. PubMed PMC

Voss N.R., Gerstein M.. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res. 2010; 38:W555–W562. PubMed PMC

Oliveira S.H., Ferraz F.A., Honorato R.V., Xavier-Neto J., Sobreira T.J., de Oliveira P.S.. KVFinder: steered identification of protein cavities as a PyMOL plugin. BMC Bioinformatics. 2014; 15:197. PubMed PMC

Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P. et al. .. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 2012; 8:e1002708. PubMed PMC

Yaffe E., Fishelovitch D., Wolfson H.J., Halperin D., Nussinov R.. MolAxis: a server for identification of channels in macromolecules. Nucleic Acids Res. 2008; 36:W210–W215. PubMed PMC

Sehnal D., Svobodová Vařeková R., Berka K., Pravda L., Navrátilová V., Banáš P., Ionescu C.-M., Otyepka M., Koča J.. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J. Cheminformatics. 2013; 5:39. PubMed PMC

Long D., Mu Y., Yang D.. Molecular dynamics simulation of ligand dissociation from liver fatty acid binding protein. PLoS One. 2009; 4:e6081. PubMed PMC

Gu Y., Shrivastava I.H., Amara S.G., Bahar I.. Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter. Proc. Natl Acad. Sci. U.S.A. 2009; 106:2589–2594. PubMed PMC

Kaus J.W., McCammon J.A.. Enhanced ligand sampling for relative protein–ligand binding free energy calculations. J. Phys. Chem. B. 2015; 119:6190–6197. PubMed PMC

Doerr S., De Fabritiis G.. On-the-Fly learning and sampling of ligand binding by high-throughput molecular simulations. J. Chem. Theory Comput. 2014; 10:2064–2069. PubMed

Kokh D.B., Amaral M., Bomke J., Grädler U., Musil D., Buchstaller H.-P., Dreyer M.K., Frech M., Lowinski M., Vallee F. et al. .. Estimation of Drug-Target residence times by τ-Random acceleration molecular dynamics simulations. J. Chem. Theory Comput. 2018; 14:3859–3869. PubMed

Chen L.Y. Hybrid steered molecular dynamics approach to computing absolute binding free energy of Ligand–Protein Complexes: A brute force approach that is fast and accurate. J. Chem. Theory Comput. 2015; 11:1928–1938. PubMed PMC

Do P.-C., Lee E.H., Le L.. Steered molecular dynamics simulation in rational drug design. J. Chem. Inf. Model. 2018; 58:1473–1482. PubMed

Skovstrup S., David L., Taboureau O., Jørgensen F.S.. A steered molecular dynamics study of binding and translocation processes in the GABA transporter. PLoS One. 2012; 7:e39360. PubMed PMC

Zhang Y., Voth G.A.. A combined metadynamics and umbrella sampling method for the calculation of ion permeation free energy profiles. J. Chem. Theory Comput. 2011; 7:2277–2283. PubMed PMC

Marques S.M., Bednar D., Damborsky J.. Computational study of protein-ligand unbinding for enzyme engineering. Front. Chem. 2019; 6:650. PubMed PMC

Furini S., Domene C.. Computational studies of transport in ion channels using metadynamics. Biochim. Biophys. Acta (BBA) - Biomembranes. 2016; 1858:1733–1740. PubMed

Filipovič J., Vávra O., Plhák J., Bednář D., Marques S.M., Brezovský J., Matyska L., Damborský J.. CaverDock: a novel method for the fast analysis of ligand transport. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2019; doi:10.1109/TCBB.2019.2907492. PubMed

Lee P.-H., Kuo K.-L., Chu P.-Y., Liu E.M., Lin J.-H.. SLITHER: a web server for generating contiguous conformations of substrate molecules entering into deep active sites of proteins or migrating through channels in membrane transporters. Nucleic Acids Res. 2009; 37:W559–W564. PubMed PMC

Cortés J., Siméon T., Ruiz de Angulo V., Guieysse D., Remaud-Siméon M., Tran V.. A path planning approach for computing large-amplitude motions of flexible molecules. Bioinformatics. 2005; 21:i116–i125. PubMed

Cortés J., Le D.T., Iehl R., Siméon T.. Simulating ligand-induced conformational changes in proteins using a mechanical disassembly method. Phys. Chem. Chem. Phys. 2010; 12:8268–8276. PubMed

Burley S.K., Berman H.M., Bhikadiya C., Bi C., Chen L., Costanzo L.D., Christie C., Duarte J.M., Dutta S., Feng Z. et al. .. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019; 47:D520–D528. PubMed PMC

Le Guilloux V., Schmidtke P., Tuffery P.. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009; 10:168. PubMed PMC

Ribeiro A.J.M., Holliday G.L., Furnham N., Tyzack J.D., Ferris K., Thornton J.M.. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. Nucleic Acids Res. 2018; 46:D618–D623. PubMed PMC

The UniProt Consortium UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018; 46:2699–2699. PubMed PMC

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J.. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 2009; 30:2785–2791. PubMed PMC

Trott O., Olson A.J.. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010; 31:455–461. PubMed PMC

Hanson R.M., Prilusky J., Renjian Z., Nakane T., Sussman J.L.. JSmol and the next-generation web-based representation of 3D molecular structure as applied to proteopedia. Isr. J. Chem. 2013; 53:207–216.

Jurcik A., Bednar D., Byska J., Marques S.M., Furmanova K., Daniel L., Kokkonen P., Brezovsky J., Strnad O., Stourac J. et al. .. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics. 2018; 34:3586–3588. PubMed PMC

O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R.. Open Babel: an open chemical toolbox. J. Cheminformatics. 2011; 3:33. PubMed PMC

Sterling T., Irwin J.J.. ZINC 15 – ligand discovery for everyone. J. Chem. Inf. Model. 2015; 55:2324–2337. PubMed PMC

Bienfait B., Ertl P.. JSME: a free molecule editor in JavaScript. J. Cheminformatics. 2013; 5:24. PubMed PMC

Marques S.M., Daniel L., Buryska T., Prokop Z., Brezovsky J., Damborsky J.. Enzyme tunnels and gates as relevant targets in drug design. Med. Res. Rev. 2017; 37:1095–1139. PubMed

Koudelakova T., Chovancova E., Brezovsky J., Monincova M., Fortova A., Jarkovsky J., Damborsky J.. Substrate specificity of haloalkane dehalogenases. Biochem. J. 2011; 435:345–354. PubMed

Gehret J.J., Gu L., Geders T.W., Brown W.C., Gerwick L., Gerwick W.H., Sherman D.H., Smith J.L.. Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Sci. 2012; 21:239–248. PubMed PMC

Kokkonen P., Bednar D., Dockalova V., Prokop Z., Damborsky J.. Conformational changes allow processing of bulky substrates by a haloalkane dehalogenase with a small and buried active site. J. Biol. Chem. 2018; 293:11505–11512. PubMed PMC

Haddad A., Davis M., Lagman R.. The pharmacological importance of cytochrome CYP3A4 in the palliation of symptoms: review and recommendations for avoiding adverse drug interactions. Support. Care Cancer. 2007; 15:251–257. PubMed

Baylon J.L., Lenov I.L., Sligar S.G., Tajkhorshid E.. Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J. Am. Chem. Soc. 2013; 135:8542–8551. PubMed PMC

Banegas-Luna A.-J., Cerón-Carrasco J.P., Pérez-Sánchez H.. A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data. Future Med. Chem. 2018; 10:2641–2658. PubMed

Pravda L., Sehnal D., Toušek D., Navrátilová V., Bazgier V., Berka K., Svobodová Vareková R., Koca J., Otyepka M.. MOLEonline: a web-based tool for analyzing channels, tunnels and pores. Nucleic Acids Res. 2018; 46:W368–W373. PubMed PMC

Kim J.K., Cho Y., Lee M., Laskowski R.A., Ryu S.E., Sugihara K., Kim D.S.. BetaCavityWeb: a webserver for molecular voids and channels. Nucleic Acids Res. 2015; 43:W413–W418. PubMed PMC

Masood T.B., Sandhya S., Chandra N., Natarajan V.. CHEXVIS: a tool for molecular channel extraction and visualization. BMC Bioinformatics. 2015; 16:119–138. PubMed PMC

Gutmanas A., Alhroub Y., Battle G.M., Berrisford J.M., Bochet E., Conroy M.J., Dana J.M., Fernandez Montecelo M.A., van Ginkel G., Gore S.P. et al. .. PDBe: Protein Data Bank in Europe. Nucleic Acids Res. 2014; 42:D285–D291. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Azobenzene-Based Photoswitchable Substrates for Advanced Mechanistic Studies of Model Haloalkane Dehalogenase Enzyme Family

. 2024 Aug 02 ; 14 (15) : 11635-11645. [epub] 20240722

In silico investigation of cholesterol-lowering drugs to find potential inhibitors of dehydrosqualene synthase in Staphylococcus aureus

. 2024 Feb ; 14 (2) : 39. [epub] 20240117

ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era

. 2024 Jan 05 ; 52 (D1) : D413-D418.

Illuminating the mechanism and allosteric behavior of NanoLuc luciferase

. 2023 Nov 29 ; 14 (1) : 7864. [epub] 20231129

PredictONCO: a web tool supporting decision-making in precision oncology by extending the bioinformatics predictions with advanced computing and machine learning

. 2023 Nov 22 ; 25 (1) : .

CLICK-chemoproteomics and molecular dynamics simulation reveals pregnenolone targets and their binding conformations in Th2 cells

. 2023 ; 14 () : 1229703. [epub] 20231031

Comparison of Fungal Thermophilic and Mesophilic Catalase-Peroxidases for Their Antioxidative Properties

. 2023 Jul 04 ; 12 (7) : . [epub] 20230704

Water potential governs the effector specificity of the transcriptional regulator XylR of Pseudomonas putida

. 2023 May ; 25 (5) : 1041-1054. [epub] 20230131

Fully automated virtual screening pipeline of FDA-approved drugs using Caver Web

. 2022 ; 20 () : 6512-6518. [epub] 20221117

Structural Analysis of the Ancestral Haloalkane Dehalogenase AncLinB-DmbA

. 2021 Nov 05 ; 22 (21) : . [epub] 20211105

Screening of world approved drugs against highly dynamical spike glycoprotein of SARS-CoV-2 using CaverDock and machine learning

. 2021 ; 19 () : 3187-3197. [epub] 20210526

Simulation of Ligand Transport in Receptors Using CaverDock

Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst

. 2020 Sep 11 ; 11 (41) : 11162-11178. [epub] 20200911

Dual Substrate Specificity of the Rutinosidase from Aspergillus niger and the Role of Its Substrate Tunnel

. 2020 Aug 07 ; 21 (16) : . [epub] 20200807

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...