MOLE 2.0: advanced approach for analysis of biomacromolecular channels

. 2013 Aug 16 ; 5 (1) : 39. [epub] 20130816

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid23953065

BACKGROUND: Channels and pores in biomacromolecules (proteins, nucleic acids and their complexes) play significant biological roles, e.g., in molecular recognition and enzyme substrate specificity. RESULTS: We present an advanced software tool entitled MOLE 2.0, which has been designed to analyze molecular channels and pores. Benchmark tests against other available software tools showed that MOLE 2.0 is by comparison quicker, more robust and more versatile. As a new feature, MOLE 2.0 estimates physicochemical properties of the identified channels, i.e., hydropathy, hydrophobicity, polarity, charge, and mutability. We also assessed the variability in physicochemical properties of eighty X-ray structures of two members of the cytochrome P450 superfamily. CONCLUSION: Estimated physicochemical properties of the identified channels in the selected biomacromolecules corresponded well with the known functions of the respective channels. Thus, the predicted physicochemical properties may provide useful information about the potential functions of identified channels. The MOLE 2.0 software is available at http://mole.chemi.muni.cz.

Zobrazit více v PubMed

Matthews BW, Liu L. A review about nothing: are apolar cavities in proteins really empty? Protein Sci. 2009;18:494–502. PubMed PMC

Walz T, Smith BL, Agre P, Engel A. The three-dimensional structure of human erythrocyte aquaporin CHIP. EMBO J. 1994;13:2985–2993. PubMed PMC

Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R. Crystal structure and mechanism of a calcium-gated potassium channel. Nature. 2002;417:515–522. doi: 10.1038/417515a. PubMed DOI

Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science. 1998;280:69–77. doi: 10.1126/science.280.5360.69. PubMed DOI

Alexander SPH, Mathie A, Peters JA. Guide to Receptors and Channels (GRAC), 5th edition. Br J Pharmacol. 2011;164(Suppl):S1–S324. PubMed PMC

MacKinnon R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture) Angewandte Chemie (International ed. in English) 2004;43:4265–4277. doi: 10.1002/anie.200400662. PubMed DOI

Murray JW, Barber J. Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J Struct Biol. 2007;159:228–237. doi: 10.1016/j.jsb.2007.01.016. PubMed DOI

Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol. 2009;16:334–342. doi: 10.1038/nsmb.1559. PubMed DOI

Voss NR, Gerstein M, Steitz TA, Moore PB. The geometry of the ribosomal polypeptide exit tunnel. J Mol Biol. 2006;360:893–906. doi: 10.1016/j.jmb.2006.05.023. PubMed DOI

Wade RC, Winn PJ, Schlichting I, Sudarko. A survey of active site access channels in cytochromes P450. J Inorg Biochem. 2004;98:1175–1182. doi: 10.1016/j.jinorgbio.2004.02.007. PubMed DOI

Otyepka M, Skopalík J, Anzenbacherová E, Anzenbacher P. What common structural features and variations of mammalian P450s are known to date? Biochim Biophys Acta. 2007;1770:376–389. doi: 10.1016/j.bbagen.2006.09.013. PubMed DOI

Otyepka M, Berka K, Anzenbacher P. Is there a relationship between the substrate preferences and structural flexibility of cytochromes P450? Curr Drug Metab. 2012;13:130–142. doi: 10.2174/138920012798918372. PubMed DOI

Berka K, Hendrychová T, Anzenbacher P, Otyepka M. Membrane position of ibuprofen agrees with suggested access path entrance to cytochrome P450 2C9 active site. J Phys Chem A. 2011;115:11248–11255. doi: 10.1021/jp204488j. PubMed DOI PMC

Hendrychova T, Berka K, Navratilova V, Anzenbacher P, Otyepka M. Dynamics and hydration of the active sites of mammalian cytochromes P450 probed by molecular dynamics simulations. Curr Drug Metab. 2012;13:177–189. doi: 10.2174/138920012798918408. PubMed DOI

Cojocaru V, Winn PJ, Wade RC. The ins and outs of cytochrome P450s. Biochim Biophys Acta. 2007;1770:390–401. doi: 10.1016/j.bbagen.2006.07.005. PubMed DOI

Gilson MK, Straatsma TP, McCammon JA, Ripoll DR, Faerman CH, Axelsen PH, Silman I, Sussman JL. Open “back door” in a molecular dynamics simulation of acetylcholinesterase. Science. 1994;263:1276–1278. doi: 10.1126/science.8122110. PubMed DOI

Wiesner J, Kriz Z, Kuca K, Jun D, Koca J. Acetylcholinesterases–the structural similarities and differences. J Enzyme Inhib Med Chem. 2007;22:417–424. doi: 10.1080/14756360701421294. PubMed DOI

Sanson B, Colletier J-P, Xu Y, Lang PT, Jiang H, Silman I, Sussman JL, Weik M. Backdoor opening mechanism in acetylcholinesterase based on X-ray crystallography and molecular dynamics simulations. Protein Sci. 2011;20:1114–1118. doi: 10.1002/pro.661. PubMed DOI PMC

Petrek M, Kosinová P, Koca J, Otyepka M. MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure. 2007;15:1357–1363. doi: 10.1016/j.str.2007.10.007. PubMed DOI

Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, Wade RC, Tsuda M, Nagata Y, Damborsky J. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol. 2009;5:727–733. doi: 10.1038/nchembio.205. PubMed DOI

Biedermannová L, Prokop Z, Gora A, Chovancová E, Kovács M, Damborsky J, Wade RC. A single mutation in a tunnel to the active site changes the mechanism and kinetics of product release in haloalkane dehalogenase LinB. J Biol Chem. 2012;287:29062–29074. doi: 10.1074/jbc.M112.377853. PubMed DOI PMC

Brezovsky J, Chovancova E, Gora A, Pavelka A, Biedermannova L, Damborsky J. Software tools for identification, visualization and analysis of protein tunnels and channels. Biotechnol Adv. 2012;31:38–49. doi: 10.1038/nbt.2463. PubMed DOI

Lee P-H, Helms V. Identifying continuous pores in protein structures with PROPORES by computational repositioning of gating residues. Proteins. 2011;80:421–432. PubMed

Levitt DG, Banaszak LJ. POCKET: a computer graphies method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph. 1992;10:229–234. doi: 10.1016/0263-7855(92)80074-N. PubMed DOI

Hendlich M, Rippmann F, Barnickel G. LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graphics Model. 1997;15:359–363. doi: 10.1016/S1093-3263(98)00002-3. PubMed DOI

Huang B, Schroeder M. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol. 2006;6:19. doi: 10.1186/1472-6807-6-19. PubMed DOI PMC

Raunest M, Kandt C. dxTuber: detecting protein cavities, tunnels and clefts based on protein and solvent dynamics. J Mol Graph Model. 2011;29:895–905. doi: 10.1016/j.jmgm.2011.02.003. PubMed DOI

Ho BK, Gruswitz F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct Biol. 2008;8:49. doi: 10.1186/1472-6807-8-49. PubMed DOI PMC

Voss NR, Gerstein M. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res. 2010;38:W555–W562. doi: 10.1093/nar/gkq395. PubMed DOI PMC

Petrek M, Otyepka M, Banás P, Kosinová P, Koca J, Damborský J. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics. 2006;7:316. doi: 10.1186/1471-2105-7-316. PubMed DOI PMC

Coleman RG, Sharp KA. Finding and characterizing tunnels in macromolecules with application to ion channels and pores. Biophys J. 2009;96:632–645. doi: 10.1529/biophysj.108.135970. PubMed DOI PMC

Brady GP, Stouten PFW, Brady GP Jr. Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des. 2000;14:383–401. doi: 10.1023/A:1008124202956. PubMed DOI

Laskowski RA. SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995;13:323–330. doi: 10.1016/0263-7855(95)00073-9. PubMed DOI

Smart OS, Neduvelil JG, Wang X, Wallace BAA, Sansom MSP. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph. 1996;14:354–360. doi: 10.1016/S0263-7855(97)00009-X. PubMed DOI

Pellegrini-Calace M, Maiwald T, Thornton JM. PoreWalker: a novel tool for the identification and characterization of channels in transmembrane proteins from their three-dimensional structure. PLoS Comput Biol. 2009;5:e1000440. doi: 10.1371/journal.pcbi.1000440. PubMed DOI PMC

Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R. MolAxis: efficient and accurate identification of channels in macromolecules. Proteins. 2008;73:72–86. doi: 10.1002/prot.22052. PubMed DOI PMC

Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R. MolAxis: a server for identification of channels in macromolecules. Nucleic Acids Res. 2008;36:W210–W215. doi: 10.1093/nar/gkn223. PubMed DOI PMC

Medek P, Benes P, Sochor J. Multicriteria tunnel computation. CGIM '08. Proceedings of the Tenth IASTED International Conference on Computer Graphics and Imaging; Innsbruck, Austria. 2008. pp. 57–61.

Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P, Biedermannova L, Sochor J, Damborsky J. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012;8:e1002708. doi: 10.1371/journal.pcbi.1002708. PubMed DOI PMC

Schrödinger L. The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC. 2010. (see PyMOL page: http://www.pymol.org/citing)

Berka K, Hanák O, Sehnal D, Banáš P, Navrátilová V, Jaiswal D, Ionescu C-M, Svobodová Vareková R, Koca J, Otyepka M. MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res. 2012;40:W222–W227. doi: 10.1093/nar/gks363. PubMed DOI PMC

Liu Y, Snoeyink J. A comparison of five implementations of 3D Delaunay tessellation in combinatorial and computational geometry. Combinatorial Computational Geometry. 2005;52:439–458.

Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. PubMed DOI

Cid H, Bunster M, Canales M, Gazitúa F. Hydrophobicity and structural classes in proteins. Protein Eng Design Selection. 1992;5:373–375. doi: 10.1093/protein/5.5.373. PubMed DOI

Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics. 1992;8:275–282. doi: 10.1093/bioinformatics/8.3.275. PubMed DOI

Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol. 1968;21:170–201. doi: 10.1016/0022-5193(68)90069-6. PubMed DOI

Dwyer RA. Higher-dimensional voronoi diagrams in linear expected time. Discrete Comput Geom. 1991;6:343–367. doi: 10.1007/BF02574694. DOI

Herráez A. Biomolecules in the computer: Jmol to the rescue. Bioch Mol Biol Educ. 2006;34:255–261. doi: 10.1002/bmb.2006.494034042644. PubMed DOI

Porter CT, Bartlett GJ, Thornton JM. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 2004;32:D129–D133. doi: 10.1093/nar/gkh028. PubMed DOI PMC

Andersen OS, Koeppe RE, Roux B. Gramicidin channels. IEEE Trans Nanobioscience. 2005;4:10–20. doi: 10.1109/TNB.2004.842470. PubMed DOI

Brzezinski P, Gennis RB. Cytochrome c oxidase: exciting progress and remaining mysteries. J Bioenerg Biomembr. 2008;40:521–531. doi: 10.1007/s10863-008-9181-7. PubMed DOI PMC

Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol. 2005;346:967–989. doi: 10.1016/j.jmb.2004.12.031. PubMed DOI

Teng Y-B, Jiang Y-L, He Y-X, He W-W, Lian F-M, Chen Y, Zhou C-Z. Structural insights into the substrate tunnel of Saccharomyces cerevisiae carbonic anhydrase Nce103. BMC Struct Biol. 2009;9:67. doi: 10.1186/1472-6807-9-67. PubMed DOI PMC

Pochapsky TC, Kazanis S, Dang M. Conformational plasticity and structure/function relationships in cytochromes P450. Antioxid Redox Signal. 2010;13:1273–1296. doi: 10.1089/ars.2010.3109. PubMed DOI PMC

Poulos TL, Finzel BC, Howard AJ. High-resolution crystal structure of cytochrome P450cam. J Mol Biol. 1987;195:687–700. doi: 10.1016/0022-2836(87)90190-2. PubMed DOI

Ravichandran K, Boddupalli S, Hasermann C, Peterson J, Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science. 1993;261:731–736. doi: 10.1126/science.8342039. PubMed DOI

DeVore NM, Scott EE. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone binding and access channel in human cytochrome P450 2A6 and 2A13 enzymes. J Biol Chem. 2012;287:26576–26585. doi: 10.1074/jbc.M112.372813. PubMed DOI PMC

Ludemann SK, Lounnas V, Wade RC. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol. 2000;303:797–811. doi: 10.1006/jmbi.2000.4154. PubMed DOI

Lüdemann SK, Lounnas V, Wade RC. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways. J Mol Biol. 2000;303:813–830. doi: 10.1006/jmbi.2000.4155. PubMed DOI

Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991;10:1–14. doi: 10.1089/dna.1991.10.1. PubMed DOI

Skopalík J, Anzenbacher P, Otyepka M. Flexibility of human cytochromes P450: molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which correlate with their substrate preferences. J Phys Chem B. 2008;112:8165–8173. doi: 10.1021/jp800311c. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era

. 2024 Jan 05 ; 52 (D1) : D413-D418.

Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport

. 2019 Jul 02 ; 47 (W1) : W414-W422.

MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update)

. 2018 Jul 02 ; 46 (W1) : W368-W373.

ChannelsDB: database of biomacromolecular tunnels and pores

. 2018 Jan 04 ; 46 (D1) : D399-D405.

PDBsum: Structural summaries of PDB entries

. 2018 Jan ; 27 (1) : 129-134. [epub] 20171027

Interactive exploration of ligand transportation through protein tunnels

. 2017 Feb 15 ; 18 (Suppl 2) : 22. [epub] 20170215

The Diversity of Yellow-Related Proteins in Sand Flies (Diptera: Psychodidae)

. 2016 ; 11 (11) : e0166191. [epub] 20161103

The Eighth Central European Conference "Chemistry towards Biology": Snapshot

. 2016 Oct 17 ; 21 (10) : . [epub] 20161017

Anatomy of enzyme channels

. 2014 Nov 18 ; 15 (1) : 379. [epub] 20141118

PDBsum additions

. 2014 Jan ; 42 (Database issue) : D292-6. [epub] 20131022

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...