MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update)
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29718451
PubMed Central
PMC6030847
DOI
10.1093/nar/gky309
PII: 4990029
Knihovny.cz E-zdroje
- MeSH
- internet * MeSH
- konformace proteinů * MeSH
- molekulární modely MeSH
- software * MeSH
- výpočetní biologie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MOLEonline is an interactive, web-based application for the detection and characterization of channels (pores and tunnels) within biomacromolecular structures. The updated version of MOLEonline overcomes limitations of the previous version by incorporating the recently developed LiteMol Viewer visualization engine and providing a simple, fully interactive user experience. The application enables two modes of calculation: one is dedicated to the analysis of channels while the other was specifically designed for transmembrane pores. As the application can use both PDB and mmCIF formats, it can be leveraged to analyze a wide spectrum of biomacromolecular structures, e.g. stemming from NMR, X-ray and cryo-EM techniques. The tool is interconnected with other bioinformatics tools (e.g., PDBe, CSA, ChannelsDB, OPM, UniProt) to help both setup and the analysis of acquired results. MOLEonline provides unprecedented analytics for the detection and structural characterization of channels, as well as information about their numerous physicochemical features. Here we present the application of MOLEonline for structural analyses of α-hemolysin and transient receptor potential mucolipin 1 (TRMP1) pores. The MOLEonline application is freely available via the Internet at https://mole.upol.cz.
Zobrazit více v PubMed
Pravda L., Berka K., Svobodová Vařeková R., Sehnal D., Banáš P., Laskowski R.A., Koča J., Otyepka M.. Anatomy of enzyme channels. BMC Bioinformatics. 2014; 15:379. PubMed PMC
Huang X., Holden H.M., Raushel F.M.. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 2001; 70:149–180. PubMed
Raushel F.M., Thoden J.B., Holden H.M.. Enzymes with molecular tunnels. Acc. Chem. Res. 2003; 36:539–548. PubMed
Sykora J., Brezovsky J., Koudelakova T., Lahoda M., Fortova A., Chernovets T., Chaloupkova R., Stepankova V., Prokop Z., Smatanova I.K. et al. . Dynamics and hydration explain failed functional transformation in dehalogenase design. Nat. Chem. Biol. 2014; 10:428–430. PubMed
Kingsley L.J., Lill M.A.. Substrate tunnels in enzymes: Structure-function relationships and computational methodology. Proteins Struct. Funct. Bioinform. 2015; 83:599–611. PubMed PMC
Ehara H., Yokoyama T., Shigematsu H., Yokoyama S., Shirouzu M., Sekine S.. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science. 2017; 357:921–924. PubMed
Voss N.R., Gerstein M., Steitz T.A., Moore P.B.. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 2006; 360:893–906. PubMed
Petřek M., Košinová P., Koča J., Otyepka M.. MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure. 2007; 15:1357–1363. PubMed
Smart O.S., Neduvelil J.G., Wang X., Wallace B.A., Sansom M.S.P.. HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 1996; 14:354–360. PubMed
Oliva R., Thornton J.M., Pellegrini-Calace M.. PoreLogo: A new tool to analyse, visualize and compare channels in transmembrane proteins. Bioinformatics. 2009; 25:3183–3184. PubMed
Twomey E.C., Yelshanskaya M.V., Grassucci R.A., Frank J., Sobolevsky A.I.. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature. 2017; 549:60–65. PubMed PMC
Schmiege P., Fine M., Blobel G., Li X.. Human TRPML1 channel structures in open and closed conformations. Nature. 2017; 550:366–370. PubMed PMC
Tarvin R.D., Borghese C.M., Sachs W., Santos J.C., Lu Y., O’Connell L.A., Cannatella D.C., Harris R.A., Zakon H.H.. Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance. Science. 2017; 357:1261–1266. PubMed PMC
Mi W., Li Y., Yoon S.H., Ernst R.K., Walz T., Liao M.. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature. 2017; 549:233–237. PubMed PMC
Koča J., Svobodová Vařeková R., Pravda L., Berka K., Geidl S., Sehnal D., Otyepka M.. Structural Bioinformatics Tools for Drug Design. 2016; 1st ednCham: Springer International Publishing.
Berka K., Hanák O., Sehnal D., Banáš P., Navrátilová V., Jaiswal D., Ionescu C.-M., Svobodová Vařeková R., Koča J., Otyepka M.. MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res. 2012; 40:W222–W227. PubMed PMC
Pravda L., Sehnal D., Svobodová Vařeková R., Navrátilová V., Toušek D., Berka K., Otyepka M., Koča J.. ChannelsDB: database of biomacromolecular tunnels and pores. Nucleic Acids Res. 2018; 46:D399–D405. PubMed PMC
Sehnal D., Svobodová Vařeková R., Berka K., Pravda L., Navrátilová V., Banáš P., Ionescu C.-M., Otyepka M., Koča J.. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J. Cheminform. 2013; 5:39. PubMed PMC
Sehnal D., Deshpande M., Vařeková R.S., Mir S., Berka K., Midlik A., Pravda L., Velankar S., Koča J.. LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat. Methods. 2017; 14:1121–1122. PubMed
Mir S., Alhroub Y., Anyango S., Armstrong D.R., Berrisford J.M., Clark A.R., Conroy M.J., Dana J.M., Deshpande M., Gupta D. et al. . PDBe: towards reusable data delivery infrastructure at protein data bank in Europe. Nucleic Acids Res. 2018; 46:D486–D492. PubMed PMC
Lomize M.A., Pogozheva I.D., Joo H., Mosberg H.I., Lomize A.L.. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012; 40:D370–D376. PubMed PMC
Nugent T., Jones D.T.. Membrane protein orientation and refinement using a knowledge-based statistical potential. BMC Bioinformatics. 2013; 14:276. PubMed PMC
Porter C.T., Bartlett G.J., Thornton J.M.. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 2004; 32:D129–D133. PubMed PMC
Sehnal D., Pravda L., Svobodová Vařeková R., Ionescu C.-M., Koča J.. PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank. Nucleic Acids Res. 2015; 43:W383–W388. PubMed PMC
Nightingale A., Antunes R., Alpi E., Bursteinas B., Gonzales L., Liu W., Luo J., Qi G., Turner E., Martin M.. The proteins API: accessing key integrated protein and genome information. Nucleic Acids Res. 2017; 45:W539–W544. PubMed PMC
Velankar S., Dana J.M., Jacobsen J., Van Ginkel G., Gane P.J., Luo J., Oldfield T.J., O’Donovan C., Martin M.J., Kleywegt G.J.. SIFTS: structure integration with function, taxonomy and sequences resource. Nucleic Acids Res. 2013; 41:483–489. PubMed PMC
Valeva A., Pongs J., Bhakdi S., Palmer M.. Staphylococcal α-toxin: the role of the N-terminus in formation of the heptameric pore - a fluorescence study. Biochim. Biophys. Acta - Biomembr. 1997; 1325:281–286. PubMed
Galdiero S., Gouaux E.. High resolution crystallographic studies of α-hemolysin-phospholipid complexes define heptamer-lipid head group interactions: implication for understanding protein-lipid interactions. Protein Sci. 2004; 13:1503–1511. PubMed PMC
Menestrina G., Dalla Serra M., Comai M., Coraiola M., Viero G., Werner S., Colin D.A., Monteil H., Prévost G.. Ion channels and bacterial Infection: the case of β-barrel pore-forming protein toxins of staphylococcus aureus. FEBS Lett. 2003; 552:54–60. PubMed
Bhattacharya S., Muzard J., Payet L., Mathé J., Bockelmann U., Aksimentiev A., Viasnoff V.. Rectification of the current in α-hemolysin pore depends on the cation type: the alkali series probed by molecular dynamics simulations and experiments. J. Phys. Chem. C. 2011; 115:4255–4264. PubMed PMC
Schrodinger LLC The PyMOL Molecular Graphics System. 2010.
Gees M., Colsoul B., Nilius B.. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb. Perspect. Biol. 2010; 2:a003962. PubMed PMC
Li M., Zhang W.K., Benvin N.M., Zhou X., Su D., Li H., Wang S., Michailidis I.E., Tong L., Li X. et al. . Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel. Nat. Struct. Mol. Biol. 2017; 24:205–213. PubMed PMC
Paloncýová M., Navrátilová V., Berka K., Laio A., Otyepka M.. Role of enzyme flexibility in ligand access and egress to active site: bias-exchange metadynamics study of 1,3,7-Trimethyluric acid in cytochrome P450 3A4. J. Chem. Theory Comput. 2016; 12:2101–2109. PubMed
ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era
Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport