MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update)

. 2018 Jul 02 ; 46 (W1) : W368-W373.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29718451

MOLEonline is an interactive, web-based application for the detection and characterization of channels (pores and tunnels) within biomacromolecular structures. The updated version of MOLEonline overcomes limitations of the previous version by incorporating the recently developed LiteMol Viewer visualization engine and providing a simple, fully interactive user experience. The application enables two modes of calculation: one is dedicated to the analysis of channels while the other was specifically designed for transmembrane pores. As the application can use both PDB and mmCIF formats, it can be leveraged to analyze a wide spectrum of biomacromolecular structures, e.g. stemming from NMR, X-ray and cryo-EM techniques. The tool is interconnected with other bioinformatics tools (e.g., PDBe, CSA, ChannelsDB, OPM, UniProt) to help both setup and the analysis of acquired results. MOLEonline provides unprecedented analytics for the detection and structural characterization of channels, as well as information about their numerous physicochemical features. Here we present the application of MOLEonline for structural analyses of α-hemolysin and transient receptor potential mucolipin 1 (TRMP1) pores. The MOLEonline application is freely available via the Internet at https://mole.upol.cz.

Zobrazit více v PubMed

Pravda L., Berka K., Svobodová Vařeková R., Sehnal D., Banáš P., Laskowski R.A., Koča J., Otyepka M.. Anatomy of enzyme channels. BMC Bioinformatics. 2014; 15:379. PubMed PMC

Huang X., Holden H.M., Raushel F.M.. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 2001; 70:149–180. PubMed

Raushel F.M., Thoden J.B., Holden H.M.. Enzymes with molecular tunnels. Acc. Chem. Res. 2003; 36:539–548. PubMed

Sykora J., Brezovsky J., Koudelakova T., Lahoda M., Fortova A., Chernovets T., Chaloupkova R., Stepankova V., Prokop Z., Smatanova I.K. et al. . Dynamics and hydration explain failed functional transformation in dehalogenase design. Nat. Chem. Biol. 2014; 10:428–430. PubMed

Kingsley L.J., Lill M.A.. Substrate tunnels in enzymes: Structure-function relationships and computational methodology. Proteins Struct. Funct. Bioinform. 2015; 83:599–611. PubMed PMC

Ehara H., Yokoyama T., Shigematsu H., Yokoyama S., Shirouzu M., Sekine S.. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science. 2017; 357:921–924. PubMed

Voss N.R., Gerstein M., Steitz T.A., Moore P.B.. The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 2006; 360:893–906. PubMed

Petřek M., Košinová P., Koča J., Otyepka M.. MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure. 2007; 15:1357–1363. PubMed

Smart O.S., Neduvelil J.G., Wang X., Wallace B.A., Sansom M.S.P.. HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 1996; 14:354–360. PubMed

Oliva R., Thornton J.M., Pellegrini-Calace M.. PoreLogo: A new tool to analyse, visualize and compare channels in transmembrane proteins. Bioinformatics. 2009; 25:3183–3184. PubMed

Twomey E.C., Yelshanskaya M.V., Grassucci R.A., Frank J., Sobolevsky A.I.. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature. 2017; 549:60–65. PubMed PMC

Schmiege P., Fine M., Blobel G., Li X.. Human TRPML1 channel structures in open and closed conformations. Nature. 2017; 550:366–370. PubMed PMC

Tarvin R.D., Borghese C.M., Sachs W., Santos J.C., Lu Y., O’Connell L.A., Cannatella D.C., Harris R.A., Zakon H.H.. Interacting amino acid replacements allow poison frogs to evolve epibatidine resistance. Science. 2017; 357:1261–1266. PubMed PMC

Mi W., Li Y., Yoon S.H., Ernst R.K., Walz T., Liao M.. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature. 2017; 549:233–237. PubMed PMC

Koča J., Svobodová Vařeková R., Pravda L., Berka K., Geidl S., Sehnal D., Otyepka M.. Structural Bioinformatics Tools for Drug Design. 2016; 1st ednCham: Springer International Publishing.

Berka K., Hanák O., Sehnal D., Banáš P., Navrátilová V., Jaiswal D., Ionescu C.-M., Svobodová Vařeková R., Koča J., Otyepka M.. MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res. 2012; 40:W222–W227. PubMed PMC

Pravda L., Sehnal D., Svobodová Vařeková R., Navrátilová V., Toušek D., Berka K., Otyepka M., Koča J.. ChannelsDB: database of biomacromolecular tunnels and pores. Nucleic Acids Res. 2018; 46:D399–D405. PubMed PMC

Sehnal D., Svobodová Vařeková R., Berka K., Pravda L., Navrátilová V., Banáš P., Ionescu C.-M., Otyepka M., Koča J.. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J. Cheminform. 2013; 5:39. PubMed PMC

Sehnal D., Deshpande M., Vařeková R.S., Mir S., Berka K., Midlik A., Pravda L., Velankar S., Koča J.. LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat. Methods. 2017; 14:1121–1122. PubMed

Mir S., Alhroub Y., Anyango S., Armstrong D.R., Berrisford J.M., Clark A.R., Conroy M.J., Dana J.M., Deshpande M., Gupta D. et al. . PDBe: towards reusable data delivery infrastructure at protein data bank in Europe. Nucleic Acids Res. 2018; 46:D486–D492. PubMed PMC

Lomize M.A., Pogozheva I.D., Joo H., Mosberg H.I., Lomize A.L.. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012; 40:D370–D376. PubMed PMC

Nugent T., Jones D.T.. Membrane protein orientation and refinement using a knowledge-based statistical potential. BMC Bioinformatics. 2013; 14:276. PubMed PMC

Porter C.T., Bartlett G.J., Thornton J.M.. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 2004; 32:D129–D133. PubMed PMC

Sehnal D., Pravda L., Svobodová Vařeková R., Ionescu C.-M., Koča J.. PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank. Nucleic Acids Res. 2015; 43:W383–W388. PubMed PMC

Nightingale A., Antunes R., Alpi E., Bursteinas B., Gonzales L., Liu W., Luo J., Qi G., Turner E., Martin M.. The proteins API: accessing key integrated protein and genome information. Nucleic Acids Res. 2017; 45:W539–W544. PubMed PMC

Velankar S., Dana J.M., Jacobsen J., Van Ginkel G., Gane P.J., Luo J., Oldfield T.J., O’Donovan C., Martin M.J., Kleywegt G.J.. SIFTS: structure integration with function, taxonomy and sequences resource. Nucleic Acids Res. 2013; 41:483–489. PubMed PMC

Valeva A., Pongs J., Bhakdi S., Palmer M.. Staphylococcal α-toxin: the role of the N-terminus in formation of the heptameric pore - a fluorescence study. Biochim. Biophys. Acta - Biomembr. 1997; 1325:281–286. PubMed

Galdiero S., Gouaux E.. High resolution crystallographic studies of α-hemolysin-phospholipid complexes define heptamer-lipid head group interactions: implication for understanding protein-lipid interactions. Protein Sci. 2004; 13:1503–1511. PubMed PMC

Menestrina G., Dalla Serra M., Comai M., Coraiola M., Viero G., Werner S., Colin D.A., Monteil H., Prévost G.. Ion channels and bacterial Infection: the case of β-barrel pore-forming protein toxins of staphylococcus aureus. FEBS Lett. 2003; 552:54–60. PubMed

Bhattacharya S., Muzard J., Payet L., Mathé J., Bockelmann U., Aksimentiev A., Viasnoff V.. Rectification of the current in α-hemolysin pore depends on the cation type: the alkali series probed by molecular dynamics simulations and experiments. J. Phys. Chem. C. 2011; 115:4255–4264. PubMed PMC

Schrodinger LLC The PyMOL Molecular Graphics System. 2010.

Gees M., Colsoul B., Nilius B.. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb. Perspect. Biol. 2010; 2:a003962. PubMed PMC

Li M., Zhang W.K., Benvin N.M., Zhou X., Su D., Li H., Wang S., Michailidis I.E., Tong L., Li X. et al. . Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel. Nat. Struct. Mol. Biol. 2017; 24:205–213. PubMed PMC

Paloncýová M., Navrátilová V., Berka K., Laio A., Otyepka M.. Role of enzyme flexibility in ligand access and egress to active site: bias-exchange metadynamics study of 1,3,7-Trimethyluric acid in cytochrome P450 3A4. J. Chem. Theory Comput. 2016; 12:2101–2109. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...