• This record comes from PubMed

Analysis and Visualization of Protein Channels, Tunnels, and Pores with MOLEonline and ChannelsDB 2.0

Language English Country United States Media print

Document type Journal Article

Channels, tunnels, and pores serve as pathways for the transport of molecules and ions through protein structures, thus participating to their functions. MOLEonline ( https://mole.upol.cz ) is an interactive web-based tool with enhanced capabilities for detecting and characterizing channels, tunnels, and pores within protein structures. MOLEonline has two distinct calculation modes for analysis of channel and tunnels or transmembrane pores. This application gives researchers rich analytical insights into channel detection, structural characterization, and physicochemical properties. ChannelsDB 2.0 ( https://channelsdb2.biodata.ceitec.cz/ ) is a comprehensive database that offers information on the location, geometry, and physicochemical characteristics of tunnels and pores within macromolecular structures deposited in Protein Data Bank and AlphaFill databases. These tunnels are sourced from manual deposition from literature and automatic detection using software tools MOLE and CAVER. MOLEonline and ChannelsDB visualization is powered by the LiteMol Viewer and Mol* viewer, ensuring a user-friendly workspace. This chapter provides an overview of user applications and usage.

See more in PubMed

Brezovsky J, Kozlikova B, Damborsky J (2018) Computational analysis of protein tunnels and channels. In: Bornscheuer UT, Hoehne M (eds) Protein Engineering. Humana Press Inc., New York, pp 25–42 DOI

Sehnal D, Svobodová Vařeková R, Berka K et al (2013) MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminformatics 5:39 DOI

Berka K, Hanák O, Sehnal D et al (2012) MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res 40:W222–W227 PubMed DOI PMC

Pravda L, Sehnal D, Toušek D et al (2018) MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res 46:W368–W373 PubMed DOI PMC

Pravda L, Sehnal D, Svobodová Vařeková R et al (2018) ChannelsDB: database of biomacromolecular tunnels and pores. Nucleic Acids Res 46:D399–D405 PubMed DOI

Špačková A, Vávra O, Raček T et al (2023) ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era. Nucleic Acids Res 52:D413–D418 DOI PMC

Armstrong DR, Berrisford JM, Conroy MJ et al (2020) PDBe: improved findability of macromolecular structure data in the PDB. Nucleic Acids Res 48:D335–D343 PubMed

The UniProt Consortium, Bateman A, Martin M-J et al (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51:D523–D531 DOI

Hekkelman ML, De Vries I, Joosten RP et al (2023) AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat Methods 20:205–213 PubMed DOI

Sehnal D, Deshpande M, Vařeková RS et al (2017) LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat Methods 14:1121–1122 PubMed DOI

Sehnal D, Svobodová R, Berka K et al (2020) Visualization and analysis of protein structures with LiteMol Suite. In: Gáspári Z (ed) Structural bioinformatics. Methods in molecular biology, vol 2112. Humana, New York, pp 1–13 DOI

Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 PubMed DOI

Cid H, Bunster M, Canales M et al (1992) Hydrophobicity and structural classes in proteins. Protein Eng Des Sel 5:373–375 DOI

Zimmerman JM, Eliezer N, Simha R (1968) The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol 21:170–201 PubMed DOI

Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282 DOI

Lomize MA, Lomize AL, Pogozheva ID et al (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625 PubMed DOI

Nugent T, Jones DT (2013) Membrane protein orientation and refinement using a knowledge-based statistical potential. BMC Bioinformatics 14:276 PubMed DOI PMC

Furnham N, Holliday GL, de Beer TAP et al (2014) The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res 42:D485–D489 PubMed DOI

Sehnal D, Pravda L, Svobodová Vařeková R et al (2015) PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank. Nucleic Acids Res 43:W383–W388 PubMed DOI PMC

Chovancova E, Pavelka A, Benes P et al (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8:e1002708 PubMed DOI PMC

Varadi M, Anyango S, Deshpande M et al (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444 PubMed DOI

Sehnal D, Bittrich S, Deshpande M et al (2021) Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res 49:W431–W437 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...