Analysis and Visualization of Protein Channels, Tunnels, and Pores with MOLEonline and ChannelsDB 2.0
Language English Country United States Media print
Document type Journal Article
- Keywords
- Biomacromolecule, PDB, Physicochemical properties, Pore, Protein, Residues, Tunnel, Visualization, Voronoi, mmCIF, Channel,
- MeSH
- Databases, Protein * MeSH
- Web Browser MeSH
- Ion Channels metabolism chemistry MeSH
- Protein Conformation MeSH
- Models, Molecular MeSH
- Proteins chemistry metabolism MeSH
- Software * MeSH
- User-Computer Interface MeSH
- Computational Biology methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ion Channels MeSH
- Proteins MeSH
Channels, tunnels, and pores serve as pathways for the transport of molecules and ions through protein structures, thus participating to their functions. MOLEonline ( https://mole.upol.cz ) is an interactive web-based tool with enhanced capabilities for detecting and characterizing channels, tunnels, and pores within protein structures. MOLEonline has two distinct calculation modes for analysis of channel and tunnels or transmembrane pores. This application gives researchers rich analytical insights into channel detection, structural characterization, and physicochemical properties. ChannelsDB 2.0 ( https://channelsdb2.biodata.ceitec.cz/ ) is a comprehensive database that offers information on the location, geometry, and physicochemical characteristics of tunnels and pores within macromolecular structures deposited in Protein Data Bank and AlphaFill databases. These tunnels are sourced from manual deposition from literature and automatic detection using software tools MOLE and CAVER. MOLEonline and ChannelsDB visualization is powered by the LiteMol Viewer and Mol* viewer, ensuring a user-friendly workspace. This chapter provides an overview of user applications and usage.
Central European Institute of Technology Masaryk University Brno Brno Czech Republic
Faculty of Science National Centre for Biomolecular Research Brno Czech Republic
See more in PubMed
Brezovsky J, Kozlikova B, Damborsky J (2018) Computational analysis of protein tunnels and channels. In: Bornscheuer UT, Hoehne M (eds) Protein Engineering. Humana Press Inc., New York, pp 25–42 DOI
Sehnal D, Svobodová Vařeková R, Berka K et al (2013) MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminformatics 5:39 DOI
Berka K, Hanák O, Sehnal D et al (2012) MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res 40:W222–W227 PubMed DOI PMC
Pravda L, Sehnal D, Toušek D et al (2018) MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res 46:W368–W373 PubMed DOI PMC
Pravda L, Sehnal D, Svobodová Vařeková R et al (2018) ChannelsDB: database of biomacromolecular tunnels and pores. Nucleic Acids Res 46:D399–D405 PubMed DOI
Špačková A, Vávra O, Raček T et al (2023) ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era. Nucleic Acids Res 52:D413–D418 DOI PMC
Armstrong DR, Berrisford JM, Conroy MJ et al (2020) PDBe: improved findability of macromolecular structure data in the PDB. Nucleic Acids Res 48:D335–D343 PubMed
The UniProt Consortium, Bateman A, Martin M-J et al (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51:D523–D531 DOI
Hekkelman ML, De Vries I, Joosten RP et al (2023) AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat Methods 20:205–213 PubMed DOI
Sehnal D, Deshpande M, Vařeková RS et al (2017) LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat Methods 14:1121–1122 PubMed DOI
Sehnal D, Svobodová R, Berka K et al (2020) Visualization and analysis of protein structures with LiteMol Suite. In: Gáspári Z (ed) Structural bioinformatics. Methods in molecular biology, vol 2112. Humana, New York, pp 1–13 DOI
Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 PubMed DOI
Cid H, Bunster M, Canales M et al (1992) Hydrophobicity and structural classes in proteins. Protein Eng Des Sel 5:373–375 DOI
Zimmerman JM, Eliezer N, Simha R (1968) The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol 21:170–201 PubMed DOI
Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282 DOI
Lomize MA, Lomize AL, Pogozheva ID et al (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625 PubMed DOI
Nugent T, Jones DT (2013) Membrane protein orientation and refinement using a knowledge-based statistical potential. BMC Bioinformatics 14:276 PubMed DOI PMC
Furnham N, Holliday GL, de Beer TAP et al (2014) The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res 42:D485–D489 PubMed DOI
Sehnal D, Pravda L, Svobodová Vařeková R et al (2015) PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank. Nucleic Acids Res 43:W383–W388 PubMed DOI PMC
Chovancova E, Pavelka A, Benes P et al (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8:e1002708 PubMed DOI PMC
Varadi M, Anyango S, Deshpande M et al (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444 PubMed DOI
Sehnal D, Bittrich S, Deshpande M et al (2021) Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res 49:W431–W437 PubMed DOI PMC