CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23093919
PubMed Central
PMC3475669
DOI
10.1371/journal.pcbi.1002708
PII: PCOMPBIOL-D-12-00584
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- hydrolasy chemie metabolismus MeSH
- konformace proteinů * MeSH
- krystalografie MeSH
- proteiny chemie metabolismus MeSH
- shluková analýza MeSH
- simulace molekulární dynamiky MeSH
- software * MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- proteiny MeSH
Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz.
Zobrazit více v PubMed
Damborsky J, Petrek M, Banas P, Otyepka M (2007) Identification of tunnels in proteins, nucleic acids, inorganic materials and molecular ensembles. Biotechnol J 2: 62–67. PubMed
Agre P, Brown D, Nielsen S (1995) Aquaporin water channels: unanswered questions and unresolved controversies. Curr Opin Cell Biol 7: 472–483. PubMed PMC
Gold VAM, Duong F, Collinson I (2007) Structure and function of the bacterial Sec translocon. Mol Membr Biol 24: 387–394. PubMed
Gouaux E, Mackinnon R (2005) Principles of selective ion transport in channels and pumps. Science 310: 1461–1465. PubMed
Jiang Y, Lee A, Chen J, Cadene M, Chait BT, et al. (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417: 515–522. PubMed
MacKinnon R (2003) Potassium channels. FEBS Lett 555: 62–65. PubMed
Khademi S, O'Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJW, et al. (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305: 1587–1594. PubMed
Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, et al. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69–77. PubMed
Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423: 949–955. PubMed
Zhou HX, McCammon JA (2010) The gates of ion channels and enzymes. Trends Biochem Sci 35: 179–185. PubMed PMC
Barney BM, Yurth MG, Dos Santos PC, Dean DR, Seefeldt LC (2009) A substrate channel in the nitrogenase MoFe protein. J Biol Inorg Chem 14: 1015–1022. PubMed PMC
Cojocaru V, Winn PJ, Wade RC (2007) The ins and outs of cytochrome P450s. Biochim Biophys Acta 1770: 390–401. PubMed
Coulombe R, Yue KQ, Ghisla S, Vrielink A (2001) Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg-Glu pair. J Biol Chem 276: 30435–30441. PubMed
Ho FM (2008) Uncovering channels in photosystem II by computer modelling: current progress, future prospects, and lessons from analogous systems. Photosyn Res 98: 503–522. PubMed
Klvana M, Pavlova M, Koudelakova T, Chaloupkova R, Dvorak P, et al. (2009) Pathways and mechanisms for product release in the engineered haloalkane dehalogenases explored using classical and random acceleration molecular dynamics simulations. J Mol Biol 392: 1339–1356. PubMed
Moriguchi T, Ida K, Hikima T, Ueno G, Yamamoto M, et al. (2010) Channeling and conformational changes in the heterotetrameric sarcosine oxidase from Corynebacterium sp. U-96. J Biochem 148: 491–505. PubMed
Shen T, Tai K, Henchman RH, McCammon JA (2002) Molecular dynamics of acetylcholinesterase. Acc Chem Res 35: 332–340. PubMed
Huang X, Holden HM, Raushel FM (2001) Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem 70: 149–180. PubMed
Hyde CC, Ahmed SA, Padlan EA, Miles EW, Davies DR (1988) Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium . J Biol Chem 263: 17857–17871. PubMed
Krahn JM, Kim JH, Burns MR, Parry RJ, Zalkin H, et al. (1997) Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site. Biochemistry 36: 11061–11068. PubMed
Raushel FM, Thoden JB, Holden HM (2003) Enzymes with molecular tunnels. Acc Chem Res 36: 539–548. PubMed
Teplyakov A, Obmolova G, Badet B, Badet-Denisot MA (2001) Channeling of ammonia in glucosamine-6-phosphate synthase. J Mol Biol 313: 1093–1102. PubMed
Zamocky M, Herzog C, Nykyri LM, Koller F (1995) Site-directed mutagenesis of the lower parts of the major substrate channel of yeast catalase A leads to highly increased peroxidatic activity. FEBS Lett 367: 241–245. PubMed
Fishman A, Tao Y, Bentley WE, Wood TK (2004) Protein engineering of toluene 4-monooxygenase of Pseudomonas mendocina KR1 for synthesizing 4-nitrocatechol from nitrobenzene. Biotechnol Bioeng 87: 779–790. PubMed
Huang X, Raushel FM (2000) An engineered blockage within the ammonia tunnel of carbamoyl phosphate synthetase prevents the use of glutamine as a substrate but not ammonia. Biochemistry 39: 3240–3247. PubMed
Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci USA 105: 1198–1203. PubMed PMC
Chaloupkova R, Sykorova J, Prokop Z, Jesenska A, Monincova M, et al. (2003) Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J Biol Chem 278: 52622–52628. PubMed
Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, et al. (2009) Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol 5: 727–733. PubMed
Schmitt J, Brocca S, Schmid RD, Pleiss J (2002) Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity. Protein Eng 15: 595–601. PubMed
Wen Z, Baudry J, Berenbaum MR, Schuler MA (2005) Ile115Leu mutation in the SRS1 region of an insect cytochrome P450 (CYP6B1) compromises substrate turnover via changes in a predicted product release channel. Protein Eng Des Sel 18: 191–199. PubMed
Arroyo-Mañez P, Bikiel DE, Boechi L, Capece L, Di Lella S, et al. (2011) Protein dynamics and ligand migration interplay as studied by computer simulation. Biochim Biophys Acta 1814: 1054–1064. PubMed
Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9: 646–652. PubMed
Li W, Shen J, Liu G, Tang Y, Hoshino T (2011) Exploring coumarin egress channels in human cytochrome P450 2A6 by random acceleration and steered molecular dynamics simulations. Proteins 79: 271–281. PubMed
Otyepka M, Skopalik J, Anzenbacherová E, Anzenbacher P (2007) What common structural features and variations of mammalian P450s are known to date? Biochim Biophys Acta 1770: 376–389. PubMed
Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MS (1996) HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 14: 354–360. PubMed
Petrek M, Otyepka M, Banas P, Kosinova P, Koca J, et al. (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7: 316. PubMed PMC
Petrek M, Kosinova P, Koca J, Otyepka M (2007) MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure 15: 1357–1363. PubMed
Medek P, Benes P, Sochor J (2008) Multicriteria tunnel computation. In: CGIM '08 Proceedings of the Tenth IASTED International Conference on Computer Graphics and Imaging; 13–15 February 2008; Innsbruck, Austria. CGIM 2008. Available: http://www.actapress.com/Content_of_Proceeding.aspx?proceedingID=472. Accessed 15 August 2011.
Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R (2008) MolAxis: efficient and accurate identification of channels in macromolecules. Proteins 73: 72–86. PubMed PMC
Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R (2008) MolAxis: a server for identification of channels in macromolecules. Nucleic Acids Res 36: W210–215. PubMed PMC
Coleman RG, Sharp KA (2009) Finding and characterizing tunnels in macromolecules with application to ion channels and pores. Biophys J 96: 632–645. PubMed PMC
Ho BK, Gruswitz F (2008) HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct Biol 8: 49. PubMed PMC
Pellegrini-Calace M, Maiwald T, Thornton JM (2009) PoreWalker: a novel tool for the identification and characterization of channels in transmembrane proteins from their three-dimensional structure. PLoS Comput Biol 5: e1000440. PubMed PMC
Voss NR, Gerstein M (2010) 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res 38: W555–562. PubMed PMC
Aurenhammer F (1991) Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput Surv 23: 345–405.
Kim DS, Cho Y, Kim D (2005) Euclidean Voronoi diagram of 3D balls and its computation via tracing edges. Comput Aided Des 37: 1412–1424.
Barber CB, Dobkin DP, Huhdanpaa H (1996) The Quickhull algorithm for convex hulls. ACM T Math Software 22: 469–483.
Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1: 269–271.
Benes P, Medek P, Sochor J (2009) Computation of channels in protein dynamics. In: Proceedings of the IADIS International Conference Applied Computing; 19–21 November 2009; Rome, Italy. IADIS 2009. Available: http://www.iadis.net/dl/final_uploads/200917L031.pdf. Accessed 15 August 2011.
Loewenstein Y, Portugaly E, Fromer M, Linial M (2008) Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space. Bioinformatics 24: i41–49. PubMed PMC
Bouckaert RR, Frank E, Hall MA, Holmes G, Pfahringer B, et al. (2010) WEKA–Experiences with a Java Open-Source Project. J Mach Learn Res 11: 2533–2541.
Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18: 509–517.
Schrödinger LLC (2010) The PyMOL Molecular Graphics System, version 1.4r1. Available: http://www.pymol.org. http://www.pymol.org/Accessed 7 July 2011.
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38. PubMed
Yokota T, Omori T, Kodama T (1987) Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15-3. J Bacteriol 169: 4049–4054. PubMed PMC
Sallis PJ, Armfield SJ, Bull AT, Hardman DJ (1990) Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2. J Gen Microbiol 136: 115–120. PubMed
Kulakova AN, Larkin MJ, Kulakov LA (1997) The plasmid-located haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064. Microbiology 143: 109–115. PubMed
Janssen DB, Gerritse J, Brackman J, Kalk C, Jager D, et al. (1988) Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols and ethers. Eur J Biochem 171: 67–72. PubMed
Otyepka M, Damborsky J (2002) Functionally relevant motions of haloalkane dehalogenases occur in the specificity-modulating cap domains. Protein Sci 11: 1206–1217. PubMed PMC
Lüdemann SK, Lounnas V, Wade RC (2000) How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 303: 797–811. PubMed
Bosma T, Damborsky J, Stucki G, Janssen DB (2002) Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene. Appl Environ Microbiol 68: 3582–3587. PubMed PMC
Gray KA, Richardson TH, Kretz K, Short JM, Bartnek F, et al. (2001) Rapid evolution of reversible denaturation and elevated melting temperature in a microbial haloalkane dehalogenase. Adv Synth Catal 343: 607–617.
Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, et al. (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3: 373–382. PubMed
Functional determinants of lysophospholipid- and voltage-dependent regulation of TRPC5 channel
ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era
Fully automated virtual screening pipeline of FDA-approved drugs using Caver Web
SoluProtMutDB: A manually curated database of protein solubility changes upon mutations
Mechanism-Based Strategy for Optimizing HaloTag Protein Labeling
Deep Insights into the Specific Evolution of Fungal Hybrid B Heme Peroxidases
Engineering the protein dynamics of an ancestral luciferase
High-performance macromolecular data delivery and visualization for the web
Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst
Structures of hyperstable ancestral haloalkane dehalogenases show restricted conformational dynamics