Screening of world approved drugs against highly dynamical spike glycoprotein of SARS-CoV-2 using CaverDock and machine learning
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34104357
PubMed Central
PMC8174816
DOI
10.1016/j.csbj.2021.05.043
PII: S2001-0370(21)00224-5
Knihovny.cz E-zdroje
- Klíčová slova
- CaverDock, CaverWeb, Machine learning, Protein dynamics, Tunnel, Virtual screening,
- Publikační typ
- časopisecké články MeSH
The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes pathological pulmonary symptoms. Most efforts to develop vaccines and drugs against this virus target the spike glycoprotein, particularly its S1 subunit, which is recognised by angiotensin-converting enzyme 2. Here we use the in-house developed tool CaverDock to perform virtual screening against spike glycoprotein using a cryogenic electron microscopy structure (PDB-ID: 6VXX) and the representative structures of five most populated clusters from a previously published molecular dynamics simulation. The dataset of ligands was obtained from the ZINC database and consists of drugs approved for clinical use worldwide. Trajectories for the passage of individual drugs through the tunnel of the spike glycoprotein homotrimer, their binding energies within the tunnel, and the duration of their contacts with the trimer's three subunits were computed for the full dataset. Multivariate statistical methods were then used to establish structure-activity relationships and select top candidate for movement inhibition. This new protocol for the rapid screening of globally approved drugs (4359 ligands) in a multi-state protein structure (6 states) showed high robustness in the rate of finished calculations. The protocol is universal and can be applied to any target protein with an experimental tertiary structure containing protein tunnels or channels. The protocol will be implemented in the next version of CaverWeb (https://loschmidt.chemi.muni.cz/caverweb/) to make it accessible to the wider scientific community.
Institute of Computer Science Masaryk University Brno Czech Republic
International Clinical Research Centre St Ann's Hospital Brno Czech Republic
Zobrazit více v PubMed
Cascella M., Rajnik M., Cuomo A., Dulebohn S.C., Di Napoli R. StatPearls Publishing; Treasure Island (FL): 2020. StatPearls. PubMed
Murthy S., Gomersall C.D., Fowler R.A. Care for critically ill patients with COVID-19. JAMA. 2020;323(15):1499. doi: 10.1001/jama.2020.3633. PubMed DOI
Heymann D.L., Shindo N. Shindo and WHO scientific and technical advisory group for infectious hazards, COVID-19: what is next for public health? Lancet. 2020;395(10224):542–545. PubMed PMC
Hui D.S., I Azhar E., Madani T.A., Ntoumi F., Kock R., Dar O. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Inf Dis. 2020;91:264–266. PubMed PMC
Mengist H.M., Fan X., Jin T. Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease M pro. Signal Transd Targeted Therapy. 2020;5:1–2. PubMed PMC
Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289–293. PubMed
H. Pearson, Caution raised over SARS vaccine, Nature, DOI:10.1038/news050110-3.
D.S. Goodsell, M. Voigt, Ch. Zardecki, S.K. Burley, Integrative illustration for coronavirus outreach, PLOS Biology, https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000815, (accessed 10 September 2020). PubMed PMC
Li Y.-D., Chi W.-Y., Su J.-H., Ferrall L., Hung C.-F., Wu T.-C. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci. 2020;27:104. PubMed PMC
Tseng C.-T., Sbrana E., Iwata-Yoshikawa N., Newman P.C., Garron T., Atmar R.L. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS ONE. 2012;7(4):e35421. doi: 10.1371/journal.pone.0035421. PubMed DOI PMC
Yang Z.-y., Werner H.C., Kong W.-p., Leung K., Traggiai E., Lanzavecchia A. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. PNAS. 2005;102(3):797–801. PubMed PMC
Erhabor G.E. COVID-19 VACCINE IS HERE!!! West Afr J Med. 2020;37:712–713. PubMed
Oliver S., Gargano J., Marin M., Wallace M., Curran K.G., Chamberland M. The advisory committee on immunization practices’ interim recommendation for use of moderna COVID-19 vaccine – United States, December 2020. MMWR Morb Mortal Wkly Rep. 2021;69(5152):1653–1656. PubMed PMC
The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine - United States, December 2020 - PubMed, https://pubmed.ncbi.nlm.nih.gov/33332292/, (accessed 25 April 2021). PubMed PMC
A New Vaccine to Battle Covid-19 - PubMed, https://pubmed.ncbi.nlm.nih.gov/33378607/, (accessed 25 April 2021).
Oxford-AstraZeneca COVID-19 vaccine efficacy - PubMed, https://pubmed.ncbi.nlm.nih.gov/33306990/, (accessed 25 April 2021).
Chernyshev A. Pharmaceutical targeting the envelope protein of SARS-CoV-2: the screening for inhibitors in approved. Drugs. 2020 doi: 10.26434/chemrxiv.12286421.v1. DOI
Jiménez-Alberto A., Ribas-Aparicio R.M., Aparicio-Ozores G., Castelán-Vega J.A. Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Comput Biol Chem. 2020;88:107325. doi: 10.1016/j.compbiolchem.2020.107325. PubMed DOI PMC
Miroshnychenko K., Shestopalova A.V. Combined use of amentoflavone and ledipasvir could interfere with binding of spike glycoprotein of SARS-CoV-2 to ACE2. Results Mol Dock Study. 2020 doi: 10.26434/chemrxiv.12377870.v1. PubMed DOI PMC
Bennet B.M., Wolf J., Laureano R., Sellers R.S. Review of current vaccine development strategies to prevent coronavirus disease 2019 (COVID-19) Toxicol Pathol. 2020;48(7):800–809. PubMed
Klein S.L., Creisher P.S., Burd I. COVID-19 vaccine testing in pregnant females is necessary. J Clin Invest. 2020;48:800–809. doi: 10.1172/JCI147553. PubMed DOI PMC
Mehrotra D.V., Janes H.E., Fleming T.R., Annunziato P.W., Neuzil K.M., Carpp L.N. Clinical endpoints for evaluating efficacy in COVID-19 vaccine trials. Ann Intern Med. 2021;174(2):221–228. PubMed PMC
Park K.S., Sun X., Aikins M.E., Moon J.J. Non-viral COVID-19 vaccine delivery systems. Adv Drug Deliv Rev. 2021;169:137–151. PubMed PMC
Wibawa T. COVID-19 vaccine research and development: ethical issues. Trop Med Int Health. 2021;26(1):14–19. PubMed PMC
Glowacka I., Bertram S., Muller M.A., Allen P., Soilleux E., Pfefferle S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122–4134. PubMed PMC
South A.M., Brady T.M., Flynn J.T. ACE2 (Angiotensin-Converting Enzyme 2), COVID-19, and ACE Inhibitor and Ang II (Angiotensin II) receptor blocker use during the pandemic. Hypertension. 2020;76(1):16–22. PubMed PMC
Chowdhury R, Maranas CD, Biophysical characterization of the SARS-CoV-2 spike protein binding with the ACE2 receptor and implications for infectivity, bioRxiv, 2020, 2020.03.30.015891. PubMed PMC
Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.-L., Abiona O. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. PubMed PMC
Satarker S., Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch Med Res. 2020;51(6):482–491. PubMed PMC
Siu Y.L., Teoh K.T., Lo J., Chan C.M., Kien F., Escriou N. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol. 2008;82(22):11318–11330. PubMed PMC
Ou X., Liu Y., Lei X., Li P., Mi D., Ren L. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1620. PubMed PMC
Marques S.M., Daniel L., Buryska T., Prokop Z., Brezovsky J., Damborsky J. Enzyme Tunnels and gates as relevant targets in drug design. Med Res Rev. 2017;37(5):1095–1139. PubMed
Lv Z., Chu Y., Wang Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl) 2015;7:95–104. PubMed PMC
Bosch B.J., Martina B.E.E., van der Zee R., Lepault J., Haijema B.J., Versluis C. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. PNAS. 2004;101(22):8455–8460. PubMed PMC
Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek T.G. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. PubMed PMC
Du L., Yang Y., Zhou Y., Lu L.u., Li F., Jiang S. MERS-CoV spike protein: a key target for antivirals. Expert Opin Therapeutic Targets. 2017;21(2):131–143. PubMed PMC
Walls A.C., Park Y.-J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6. PubMed PMC
Singh A., Mishra A. Leucoefdin a potential inhibitor against SARS CoV-2 Mpro. J Biomol Struct Dyn. 2020:1–6. PubMed PMC
Lokhande K.B., Doiphode S., Vyas R., Swamy K.V. Molecular docking and simulation studies on SARS-CoV-2 Mpro reveals Mitoxantrone, Leucovorin, Birinapant, and Dynasore as potent drugs against COVID-19. J Biomol Struct Dyn. 2020:1–12. PubMed PMC
Stoddard S.V., Stoddard S.D., Oelkers B.K., Fitts K., Whalum K., Whalum K. Optimization rules for SARS-CoV-2 Mpro antivirals: ensemble docking and exploration of the coronavirus protease active site. Viruses. 2020;12(9):942. doi: 10.3390/v12090942. PubMed DOI PMC
Ibrahim M.A.A., Abdeljawaad K.A.A., Abdelrahman A.H.M., Hegazy M.-E.-F. Natural-like products as potential SARS-CoV-2 Mpro inhibitors: in-silico drug discovery. J Biomol Struct Dyn. 2020:1–13. PubMed PMC
Bhanu P., Kumar N.H., Kumar S.H., Relekar M., Anand D.A., Kumar J. Comparative molecular docking analysis of the SARS CoV-2 Spike glycoprotein with the human ACE-2 receptors and thrombin. Bioinformation. 2020;16:532–538. PubMed PMC
Vardhan S., Sahoo S.K. in-silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput Biol Med. 2020;124:103936. doi: 10.1016/j.compbiomed.2020.103936. PubMed DOI PMC
Kim S.Y., Jin W., Sood A., Montgomery D.W., Grant O.C., Fuster M.M. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res. 2020;181:104873. doi: 10.1016/j.antiviral.2020.104873. PubMed DOI PMC
Pandey P., Rane J.S., Chatterjee A., Kumar A., Khan R., Prakash A. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in-silico study for drug development. J Biomol Struct Dyn. 2020:1–11. PubMed PMC
Choudhary S., Malik Y.S., Tomar S. Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Front Immunol. 2020 doi: 10.3389/fimmu.2020.01664. PubMed DOI PMC
Romeo A., Iacovelli F., Falconi M. Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus Res. 2020;286:198068. PubMed PMC
Chodera J.D., Mobley D.L., Shirts M.R., Dixon R.W., Branson K., Pande V.S. Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol. 2011;21(2):150–160. PubMed PMC
Cabeza de Vaca I., Zarzuela R., Tirado-Rives J., Jorgensen W.L. Robust free energy perturbation protocols for creating molecules in solution. J Chem Theory Comput. 2019;15(7):3941–3948. PubMed PMC
Guallar V., Lu C., Borrelli K., Egawa T., Yeh S.-R. Ligand migration in the truncated hemoglobin-II from Mycobacterium tuberculosis THE ROLE OF G8 TRYPTOPHAN. J Biol Chem. 2009;284(5):3106–3116. PubMed PMC
Lucas M.F., Guallar V. An atomistic view on human hemoglobin carbon monoxide migration processes. Biophys J. 2012;102(4):887–896. PubMed PMC
Pinto G.P., Vavra O., Filipovic J., Stourac J., Bednar D., Damborsky J. Fast screening of inhibitor binding/unbinding using novel software tool CaverDock. Front Chem. 2019 doi: 10.3389/fchem.2019.00709. PubMed DOI PMC
Filipovic J., Vávra O., Plhák J., Bednar D., Marques S.M., Brezovsky J., Matyska L., Damborsky J. CaverDock: a novel method for the fast analysis of ligand transport. IEEE/ACM Trans Comput Biol Bioinf. 2019:1. PubMed
Vavra O., Filipovic J., Plhak J., Bednar D., Marques S.M., Brezovsky J., Stourac J., Matyska L., Damborsky J. CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics. 2019;35:4986–4993. PubMed
Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B. 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012;8(10):e1002708. PubMed PMC
Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31:455–461. PubMed PMC
Stourac J., Vavra O., Kokkonen P., Filipovic J., Pinto G., Brezovsky J., Damborsky J., Bednar D. Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res. 2019;47:W414–W422. PubMed PMC
Stourac J., Vavra O., Kokkonen P., Filipovic J., Pinto G., Schenkmayerova A. Caver web: identification of tunnels and channels in proteins and analysis of ligand transport. J Biotechnol. 2019;305:S72. doi: 10.1016/j.jbiotec.2019.05.251. PubMed DOI PMC
D.E. Shaw Research, Molecular Dynamics Simulations Related to SARS-CoV-2, https://www.deshawresearch.com/downloads/download_trajectory_sarscov2.cgi/.
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H. The protein data bank. Nucleic Acids Res. 2000;28:235–242. PubMed PMC
Sterling T., Irwin J.J. ZINC 15 – ligand discovery for everyone. J Chem Inf Model. 2015;55(11):2324–2337. PubMed PMC
Yang Y.I., Shao Q., Zhang J., Yang L., Gao Y.Q. Enhanced sampling in molecular dynamics. J Chem Phys. 2019;151(7):070902. doi: 10.1063/1.5109531. PubMed DOI
Harvey M.J., Giupponi G., Fabritiis G.D. ACEMD: Accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput. 2009;5(6):1632–1639. PubMed
Kumar S., Rosenberg J.M., Bouzida D., Swendsen R.H., Kollman P.A. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13(8):1011–1021.
Laio A., Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci U S A. 2002;99(20):12562–12566. PubMed PMC
Sugita Y., Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314(1-2):141–151.
Hamelberg D., Mongan J., McCammon J.A. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys. 2004;120(24):11919–11929. PubMed
Maragliano L., Vanden-Eijnden E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem Phys Lett. 2006;426(1-3):168–175.
Wang F., Landau D.P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett. 2001;86(10):2050–2053. PubMed
Rose P.W., Bi C., Bluhm W.F., Christie C.H., Dimitropoulos D., Dutta S., Green R.K., Goodsell D.S., Prlić A., Quesada M., Quinn G.B., Ramos A.G., Westbrook J.D., Young J., Zardecki C., Berman H.M., Bourne P.E. The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res. 2013;41:D475–D482. PubMed PMC
PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data | Journal of Chemical Theory and Computation, https://pubs.acs.org/doi/10.1021/ct400341p, (accessed 9 September 2020). PubMed
D. Case, R. Betz, D. S. Cerutti, T. Cheatham, T. Darden, R. Duke, T. J. Giese, H. Gohlke, A. Götz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T.-S. Lee, S. LeGrand, P. Li, C. Lin, T. Luchko and P. Kollman, Amber 16, University of California, San Francisco., 2016.
Smart O.S., Neduvelil J.G., Wang X., Wallace B.A., Sansom M.S.P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph. 1996;14(6):354–360. PubMed
Moriwaki H., Tian Y.-S., Kawashita N., Takagi T. Mordred: a molecular descriptor calculator. J Cheminf. 2018;10:4. PubMed PMC
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791. PubMed PMC
Höskuldsson A. PLS regression methods. J Chemom. 1988;2(3):211–228.
Kubinyi H, Ed., 3D QSAR in Drug Design: Volume 1: Theory Methods and Applications, Springer Netherlands, 1994.
Wold S., Dunn W.J. Multivariate quantitative structure-activity relationships (QSAR): conditions for their applicability. J Chem Inf Comput Sci. 1983;23(1):6–13.
Wold S. Validation of QSAR’s. Quant Struct-Act Relat. 1991;10(3):191–193.
Miller B.R., McGee T.D., Swails J.M., Homeyer N., Gohlke H., Roitberg A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8(9):3314–3321. doi: 10.1021/ct300418h. PubMed DOI
Genheden S., Ryde U. Expert Opin Drug Discov. 2015:10. PubMed PMC
D. A. Case, V. Babin, J. T. Berryman, R. M. Betz, Q. Cai, D. S. Cerutti, T. E. Cheatham III, T. A. Darden, R. E. Duke, H. Gohlke, A. W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko, T. S. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K. M. Merz, F. Paesani, D. R. Roe, A. Roitberg, C. Sagui, R. Salomen-Ferrer, G. Seabra, G. L. Simmerling, W. Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu and P. A. Kollman, AMBER 14, 2014.
Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11(8):3696–3713. PubMed PMC
Götz A.W., Williamson M.J., Xu D., Poole D., Le Grand S., Walker R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J Chem Theory Comput. 2012;8(5):1542–1555. doi: 10.1021/ct200909j. PubMed DOI PMC
Le Grand S., Götz A.W., Walker R.C. Speed without compromise – a mixed precision model for GPU accelerated molecular dynamics simulations. Comput Phys Commun. 2013;184(2):374–380.
Case D.A., Betz R.M., Cerutti D.S., Cheatham T.E., III, Darden T.A., Duke R.E. University of California; San Francisco: 2016. AMBER 16.
Weiser J, Shenkin PS, Still WC. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO), J Comput Chem, DOI: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A.
Wishart D.S., Knox C., Guo A.C., Shrivastava S., Hassanali M., Stothard P. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:D668–672. PubMed PMC
Trezza A., Iovinelli D., Santucci A., Prischi F., Spiga O. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Sci Rep. 2020;10:13866. PubMed PMC
Panda P.K., Arul M.N., Patel P., Verma S.K., Luo W., Rubahn H.-G. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci Adv. 2020;6(28):eabb8097. doi: 10.1126/sciadv.abb8097. PubMed DOI PMC
JCM | Free Full-Text | Highly Conserved Homotrimer Cavity Formed by the SARS-CoV-2 Spike Glycoprotein: A Novel Binding Site | HTML, https://www.mdpi.com/2077-0383/9/5/1473/htm, (accessed 16 February 2021). PubMed PMC
Wei T.-z., Wang H., Wu X.-Q., Lu Y.i., Guan S.-H., Dong F.-Q. In Silico screening of potential spike glycoprotein inhibitors of SARS-CoV-2 with drug repurposing strategy. Chin J Integr Med. 2020;26(9):663–669. PubMed PMC
Awad I.E., Abu-Saleh A.-A.-A.-A., Sharma S., Yadav A., Poirier R.A. High-throughput virtual screening of drug databanks for potential inhibitors of SARS-CoV-2 spike glycoprotein. J Biomol Struct Dyn. 2020:1–14. PubMed PMC
Mirabelli C., Wotring J.W., Zhang C.J., McCarty S.M., Fursmidt R., Frum T., Kadambi N.S., Amin A.T., O’Meara T.R., Pretto C.D., Spence J.R., Huang J., Alysandratos K.D., Kotton D.N., Handelman S.K., Wobus C.E., Weatherwax K.J., Mashour G.A., O’Meara M.J., Sexton J.Z. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. bioRxiv. 2020 doi: 10.1101/2020.05.27.117184. PubMed DOI PMC
Fully automated virtual screening pipeline of FDA-approved drugs using Caver Web