Fast Screening of Inhibitor Binding/Unbinding Using Novel Software Tool CaverDock

. 2019 ; 7 () : 709. [epub] 20191029

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31737596

Protein tunnels and channels are attractive targets for drug design. Drug molecules that block the access of substrates or release of products can be efficient modulators of biological activity. Here, we demonstrate the applicability of a newly developed software tool CaverDock for screening databases of drugs against pharmacologically relevant targets. First, we evaluated the effect of rigid and flexible side chains on sets of substrates and inhibitors of seven different proteins. In order to assess the accuracy of our software, we compared the results obtained from CaverDock calculation with experimental data previously collected with heat shock protein 90α. Finally, we tested the virtual screening capabilities of CaverDock with a set of oncological and anti-inflammatory FDA-approved drugs with two molecular targets-cytochrome P450 17A1 and leukotriene A4 hydrolase/aminopeptidase. Calculation of rigid trajectories using four processors took on average 53 min per molecule with 90% successfully calculated cases. The screening identified functional tunnels based on the profile of potential energies of binding and unbinding trajectories. We concluded that CaverDock is a sufficiently fast, robust, and accurate tool for screening binding/unbinding processes of pharmacologically important targets with buried functional sites. The standalone version of CaverDock is available freely at https://loschmidt.chemi.muni.cz/caverdock/ and the web version at https://loschmidt.chemi.muni.cz/caverweb/.

Zobrazit více v PubMed

Bajorath J. (2002). Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1:882. 10.1038/nrd941 PubMed DOI

Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., et al. (2000). The protein data bank. Nucleic Acids Res. 28, 235–242. 10.1093/nar/28.1.235 PubMed DOI PMC

Bielska E., Lucas X., Czerwoniec A., Kasprzak J. M., Kaminska K. H., Bujnicki J. M. (2014). Virtual screening strategies in drug design – methods and applications. BioTechnologia 92, 249–264. 10.5114/bta.2011.46542 DOI

Bleicher K. H., Böhm H.-J., Müller K., Alanine A. I. (2003). Hit and lead generation: beyond high-throughput screening. Nat. Rev. Drug Discov. 2, 369–378. 10.1038/nrd1086 PubMed DOI

Bottegoni G., Veronesi M., Bisignano P., Kacker P., Favia A. D., Cavalli A. (2016). Development and application of a virtual screening protocol for the identification of multitarget fragments. ChemMedChem 11, 1259–1263. 10.1002/cmdc.201500521 PubMed DOI

Chang D. T.-H., Oyang Y.-J., Lin J.-H. (2005). MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Res. 33, W233–W238. 10.1093/nar/gki586 PubMed DOI PMC

Chaput L., Martinez-Sanz J., Saettel N., Mouawad L. (2016). Benchmark of four popular virtual screening programs: construction of the active/decoy dataset remains a major determinant of measured performance. J. Cheminform. 8:56. 10.1186/s13321-016-0167-x PubMed DOI PMC

Cheng T., Li Q., Zhou Z., Wang Y., Bryant S. H. (2012). Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J. 14, 133–141. 10.1208/s12248-012-9322-0 PubMed DOI PMC

Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., et al. . (2012). CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8:e1002708. 10.1371/journal.pcbi.1002708 PubMed DOI PMC

Clark D. E. (2008). What has virtual screening ever done for drug discovery? Expert Opin. Drug Discov. 3, 841–851. 10.1517/17460441.3.8.841 PubMed DOI

Clayton G. M., Klein D. J., Rickert K. W., Patel S. B., Kornienko M., Zugay-Murphy J., et al. . (2013). Structure of the bacterial deacetylase LpxC bound to the nucleotide reaction product reveals mechanisms of oxyanion stabilization and proton transfer. J. Biol. Chem. 288, 34073–34080. 10.1074/jbc.M113.513028 PubMed DOI PMC

Čolović M. B., Krstić D. Z., Lazarević-Pašti T. D., BondŽić A. M., Vasić V. M. (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol. 11, 315–335. 10.2174/1570159X11311030006 PubMed DOI PMC

Cross J. B., Thompson D. C., Rai B. K., Baber J. C., Fan K. Y., Hu Y., et al. . (2009). Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J. Chem. Inf. Model. 49, 1455–1474. 10.1021/ci900056c PubMed DOI

Cui Y.-L., Xue Q., Zheng Q.-C., Zhang J.-L., Kong C.-P., Fan J.-R., et al. . (2015). Structural features and dynamic investigations of the membrane-bound cytochrome P450 17A1. Biochim. Biophys. Acta 1848, 2013–2021. 10.1016/j.bbamem.2015.05.017 PubMed DOI

Cummings M. D., DesJarlais R. L., Gibbs A. C., Mohan V., Jaeger E. P. (2005). Comparison of automated docking programs as virtual screening tools. J. Med. Chem. 48, 962–976. 10.1021/jm049798d PubMed DOI

Devaurs D., Bouard L., Vaisset M., Zanon C., Al-Bluwi I., Iehl R., et al. . (2013). MoMA-LigPath: a web server to simulate protein-ligand unbinding. Nucleic Acids Res. 41, W297–W302. 10.1093/nar/gkt380 PubMed DOI PMC

DeVore N. M., Scott E. E. (2012). Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature 482, 116–119. 10.1038/nature10743 PubMed DOI PMC

Epps D. E., Vosters A. F. (2002). The essential role of a free sulfhydryl group in blocking the cholesteryl site of cholesteryl ester transfer protein (CETP). Chem. Phys. Lipids 114, 113–122. 10.1016/S0009-3084(01)00187-6 PubMed DOI

Espona-Fiedler M., Soto-Cerrato V., Hosseini A., Lizcano J. M., Guallar V., Quesada R., et al. . (2012). Identification of dual mTORC1 and mTORC2 inhibitors in melanoma cells: prodigiosin vs. obatoclax. Biochem. Pharmacol. 83, 489–496. 10.1016/j.bcp.2011.11.027 PubMed DOI

Fernández A. (2014). Communication: chemical functionality of interfacial water enveloping nanoscale structural defects in proteins. J. Chem. Phys. 140:221102. 10.1063/1.4882895 PubMed DOI

Filipovic J., Vávra O., Plhák J., Bednar D., Marques S. M., Brezovsky J., et al. . (2019). CaverDock: a novel method for the fast analysis of ligand transport. IEEE/ACM Trans. Comput. Biol. Bioinform. 10.1109/TCBB.2019.2907492. [Epub ahead of print]. PubMed DOI

Funk C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875. 10.1126/science.294.5548.1871 PubMed DOI

Gattis S. G., Hernick M., Fierke C. A. (2010). Active site metal ion in UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) switches between Fe(II) and Zn(II) depending on cellular conditions. J. Biol. Chem. 285, 33788–33796. 10.1074/jbc.M110.147173 PubMed DOI PMC

Gerber N. C., Rodriguez-Crespo I., Nishida C. R., Ortiz de Montellano P. R. (1997). Active site topologies and cofactor-mediated conformational changes of nitric-oxide synthases. J. Biol. Chem. 272, 6285–6290. 10.1074/jbc.272.10.6285 PubMed DOI

Goldman M., Wittelsberger A., De Magistris M.-T. (2013). The innovative medicines initiative moves translational immunology forward. Eur. J. Immunol. 43, 298–302. 10.1002/eji.201370024 PubMed DOI

Gomis-Rüth F. X., Botelho T. O., Bode W. (2012). A standard orientation for metallopeptidases. Biochim. Biophys. Acta 1824, 157–163. 10.1016/j.bbapap.2011.04.014 PubMed DOI

Guallar V., Lu C., Borrelli K., Egawa T., Yeh S.-R. (2009). Ligand migration in the truncated hemoglobin-II from Mycobacterium tuberculosis: the role of G8 tryptophan. J. Biol. Chem. 284, 3106–3116. 10.1074/jbc.M806183200 PubMed DOI PMC

Haeggström J. Z. (2004). Leukotriene A4 hydrolase/aminopeptidase, the gatekeeper of chemotactic leukotriene B4 biosynthesis. J. Biol. Chem. 279, 50639–50642. 10.1074/jbc.R400027200 PubMed DOI

Haeggström J. Z., Tholander F., Wetterholm A. (2007). Structure and catalytic mechanisms of leukotriene A4 hydrolase. Prostaglandins Other Lipid Mediat. 83, 198–202. 10.1016/j.prostaglandins.2007.01.006 PubMed DOI

Haeggström J. Z., Wetterholm A., Vallee B. L., Samuelsson B. (1990). Leukotriene A4 hydrolase: an epoxide hydrolase with peptidase activity. Biochem. Biophys. Res. Commun. 173, 431–437. 10.1016/S0006-291X(05)81076-9 PubMed DOI

Hanwell M. D., Curtis D. E., Lonie D. C., Vandermeersch T., Zurek E., Hutchison G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4:17. 10.1186/1758-2946-4-17 PubMed DOI PMC

Hernández-Ortega A., Borrelli K., Ferreira P., Medina M., Martínez A. T., Guallar V. (2011). Substrate diffusion and oxidation in GMC oxidoreductases: an experimental and computational study on fungal aryl-alcohol oxidase. Biochem. J. 436, 341–350. 10.1042/BJ20102090 PubMed DOI

Huang Z., Wong C. F., Wheeler R. A. (2008). Flexible protein-flexible ligand docking with disrupted velocity simulated annealing. Proteins 71, 440–454. 10.1002/prot.21781 PubMed DOI

Jarzynski 1997###Jarzynski, C. (1997). Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693. 10.1103/PhysRevLett.78.2690 DOI

Kabakov A. E., Kudryavtsev V. A., Gabai V. L. (2010). Hsp90 inhibitors as promising agents for radiotherapy. J. Mol. Med. 88, 241–247. 10.1007/s00109-009-0562-0 PubMed DOI

Kaczor A. A., Silva A. G., Loza M. I., Kolb P., Castro M., Poso A. (2016). Structure-based virtual screening for dopamine D2 receptor ligands as potential antipsychotics. ChemMedChem 11, 718–729. 10.1002/cmdc.201500599 PubMed DOI

Kansy M., Senner F., Gubernator K. (1998). Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem. 41, 1007–1010. 10.1021/jm970530e PubMed DOI

Khatri Y., Gregory M. C., Grinkova Y. V., Denisov I. G., Sligar S. G. (2014). Active site proton delivery and the lyase activity of human CYP17A1. Biochem. Biophys. Res. Commun. 443, 179–184. 10.1016/j.bbrc.2013.11.094 PubMed DOI PMC

Kim S., Thiessen P. A., Bolton E. E., Chen J., Fu G., Gindulyte A., et al. . (2016). PubChem substance and compound databases. Nucleic Acids Res. 44, D1202–D1213. 10.1093/nar/gkv951 PubMed DOI PMC

Kokh D. B., Amaral M., Bomke J., Grädler U., Musil D., Buchstaller H.-P., et al. . (2018). Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. J. Chem. Theory Comput. 14, 3859–3869. 10.1021/acs.jctc.8b00230 PubMed DOI

Kollman P. (1993). Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 93, 2395–2417. 10.1021/cr00023a004 DOI

Kruse A. C., Hu J., Pan A. C., Arlow D. H., Rosenbaum D. M., Rosemond E., et al. . (2012). Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556. 10.1038/nature10867 PubMed DOI PMC

Kush R., Goldman M. (2014). Fostering responsible data sharing through standards. N. Engl. J. Med. 370, 2163–2165. 10.1056/NEJMp1401444 PubMed DOI

Lamb M. L., Jorgensen W. L. (1997). Computational approaches to molecular recognition. Curr. Opin. Chem. Biol. 1, 449–457. 10.1016/S1367-5931(97)80038-5 PubMed DOI

Lavecchia A., Di Giovanni C. (2013). Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem. 20, 2839–2860. 10.2174/09298673113209990001 PubMed DOI

Laverty H., Gunn M., Goldman M. (2012). Improving RandD productivity of pharmaceutical companies through public-private partnership: experiences from the Innovative Medicines Initiative. Expert Rev. Pharmacoecon. Outcomes Res. 12, 545–548. 10.1586/erp.12.59 PubMed DOI

Law V., Knox C., Djoumbou Y., Jewison T., Guo A. C., Liu Y., et al. . (2014). DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42, D1091–D1097. 10.1093/nar/gkt1068 PubMed DOI PMC

Lee P.-H., Kuo K.-L., Chu P.-Y., Liu E. M., Lin J.-H. (2009). SLITHER: a web server for generating contiguous conformations of substrate molecules entering into deep active sites of proteins or migrating through channels in membrane transporters. Nucleic Acids Res. 37, W559–W564. 10.1093/nar/gkp359 PubMed DOI PMC

Li J., Sun L., Xu C., Yu F., Zhou H., Zhao Y., et al. . (2012). Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90. Acta Biochim. Biophys. Sin. 44, 300–306. 10.1093/abbs/gms001 PubMed DOI

Lucas M. F., Guallar V. (2012). An atomistic view on human hemoglobin carbon monoxide migration processes. Biophys. J. 102, 887–896. 10.1016/j.bpj.2012.01.011 PubMed DOI PMC

Madadkar-Sobhani A., Guallar V. (2013). PELE web server: atomistic study of biomolecular systems at your fingertips. Nucleic Acids Res. 41, W322–W328. 10.1093/nar/gkt454 PubMed DOI PMC

Mangoni M., Roccatano D., Di Nola A. (1999). Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation. Proteins 35, 153–162. PubMed

Marques S. M., Daniel L., Buryska T., Prokop Z., Brezovsky J., Damborsky J. (2017). Enzyme tunnels and gates as relevant targets in drug design. Med. Res. Rev. 37, 1095–1139. 10.1002/med.21430 PubMed DOI

Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., et al. . (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791. 10.1002/jcc.21256 PubMed DOI PMC

Pagadala N. S., Syed K., Tuszynski J. (2017). Software for molecular docking: a review. Biophys. Rev. 9, 91–102. 10.1007/s12551-016-0247-1 PubMed DOI PMC

Ripphausen P., Nisius B., Peltason L., Bajorath J. (2010). Quo vadis, virtual screening? A comprehensive survey of prospective applications. J. Med. Chem. 53, 8461–8467. 10.1021/jm101020z PubMed DOI

Rudberg P. C., Tholander F., Thunnissen M. M. G. M., Haeggström J. Z. (2002). Leukotriene A4 hydrolase/aminopeptidase. Glutamate 271 is a catalytic residue with specific roles in two distinct enzyme mechanisms. J. Biol. Chem. 277, 1398–1404. 10.1074/jbc.M106577200 PubMed DOI

Sanson B., Colletier J.-P., Xu Y., Lang P. T., Jiang H., Silman I., et al. . (2011). Backdoor opening mechanism in acetylcholinesterase based on X-ray crystallography and molecular dynamics simulations. Protein Sci. 20, 1114–1118. 10.1002/pro.661 PubMed DOI PMC

Singh S. P., Konwar B. K. (2012). Molecular docking studies of quercetin and its analogues against human inducible nitric oxide synthase. Springerplus 1:69. 10.1186/2193-1801-1-69 PubMed DOI PMC

Sousa S. F., Cerqueira N. M., Fernandes P. A., Ramos M. J. (2010). Virtual screening in drug design and development. Comb. Chem. High Throughput Screen. 13, 442–453. 10.2174/138620710791293001 PubMed DOI

Sterling T., Irwin J. J. (2015). ZINC 15 – ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337. 10.1021/acs.jcim.5b00559 PubMed DOI PMC

Straatsma T. P., McCammon J. A. (1992). Computational alchemy. Annu. Rev. Phys. Chem. 43, 407–435. 10.1146/annurev.pc.43.100192.002203 DOI

Stsiapanava A., Olsson U., Wan M., Kleinschmidt T., Rutishauser D., Zubarev R. A., et al. . (2014). Binding of Pro-Gly-Pro at the active site of leukotriene A4 hydrolase/aminopeptidase and development of an epoxide hydrolase selective inhibitor. PNAS 111, 4227–4232. 10.1073/pnas.1402136111 PubMed DOI PMC

Szul T., Castaldi P., Cho M. H., Blalock J. E., Gaggar A. (2016). Genetic regulation of expression of leukotriene A4 hydrolase. ERJ Open Res. 2:00058-2015. 10.1183/23120541.00058-2015 PubMed DOI PMC

Thunnissen M. M., Nordlund P., Haeggström J. Z. (2001). Crystal structure of human leukotriene A(4) hydrolase, a bifunctional enzyme in inflammation. Nat. Struct. Biol. 8, 131–135. 10.1038/84117 PubMed DOI

Tomić A., Berynskyy M., Wade R. C., Tomić S. (2015). Molecular simulations reveal that the long range fluctuations of human DPP III change upon ligand binding. Mol. Biosyst. 11, 3068–3080. 10.1039/C5MB00465A PubMed DOI

Totrov M., Abagyan R. (2008). Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr. Opin. Struct. Biol. 18, 178–184. 10.1016/j.sbi.2008.01.004 PubMed DOI PMC

Trott O., Olson A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461. 10.1002/jcc.21334 PubMed DOI PMC

Vavra O., Filipovic J., Plhak J., Bednar D., Marques S. M., Brezovsky J., et al. . (2019). CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics btz386. 10.1093/bioinformatics/btz386. [Epub ahead of print]. PubMed DOI

Wang S., Ma J., Peng J., Xu J. (2013). Protein structure alignment beyond spatial proximity. Sci. Rep. 3:1448. 10.1038/srep01448 PubMed DOI PMC

Yoshimoto F. K., Auchus R. J. (2015). The diverse chemistry of cytochrome P450 17A1 (P450c17, CYP17A1). J. Steroid Biochem. Mol. Biol. 151, 52–65. 10.1016/j.jsbmb.2014.11.026 PubMed DOI PMC

Yu X., Cojocaru V., Wade R. C. (2013). Conformational diversity and ligand tunnels of mammalian cytochrome P450s. Biotechnol. Appl. Biochem. 60, 134–145. 10.1002/bab.1074 PubMed DOI

Zhang J. H., Chung T. D., Oldenburg K. R. (1999). A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73. 10.1177/108705719900400206 PubMed DOI

Zhang T., Ozbil M., Barman A., Paul T. J., Bora R. P., Prabhakar R. (2015). Theoretical insights into the functioning of metallopeptidases and their synthetic analogues. Acc. Chem. Res. 48, 192–200. 10.1021/ar500301y PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...