Impaired fibroblast growth factor receptor (FGFR) signaling is associated with many human conditions, including growth disorders, degenerative diseases, and cancer. Current FGFR therapeutics are based on chemical inhibitors of FGFR tyrosine kinase activity (TKIs). However, FGFR TKIs are limited in their target specificity as they generally inhibit all FGFRs and other receptor tyrosine kinases. In the search for specific inhibitors of human FGFR1, we identified VZ23, a DNA aptamer that binds to FGFR1b and FGFR1c with a KD of 55 nM and 162 nM, respectively, but not to the other FGFR variants (FGFR2b, FGFR2c, FGFR3b, FGFR3c, FGFR4). In cells, VZ23 inhibited the activation of downstream FGFR1 signaling and FGFR1-mediated regulation of cellular senescence, proliferation, and extracellular matrix homeostasis. Consistent with the specificity toward FGFR1 observed in vitro, VZ23 did not inhibit FGFR2-4 signaling in cells. We show that the VZ23 inhibits FGFR1 signaling in the presence of cognate fibroblast growth factor (FGF) ligands and its inhibitory activity is linked to its capacity to form unusual G-quadruplex structure. Our data suggest that targeting FGFR1 with DNA aptamers could be an effective alternative to TKIs for treating impaired FGFR1 signaling in human craniosynostoses.
- Publication type
- Journal Article MeSH
Despite the lower virulence of current SARS-CoV-2 variants and high rates of vaccinated and previously infected subjects, COVID-19 remains a persistent threat in kidney transplant recipients (KTRs). This study evaluated the parameters of anti-SARS-CoV-2 antibody production in 120 KTRs. The production of neutralizing antibodies in KTRs, following booster vaccination with the mRNA vaccine BNT162b2, was significantly decreased and their decline was faster than in healthy subjects. Factors predisposing to the downregulation of anti-SARS-CoV-2 neutralizing antibodies included age, lower estimated glomerular filtration rate, and a full dose of mycophenolate mofetil. Neutralizing antibodies correlated with those targeting the SARS-CoV-2 receptor binding domain (RBD), SARS-CoV-2 Spike trimmer, total SARS-CoV-2 S1 protein, as well as with antibodies to the deadly SARS-CoV-1 virus. No cross-reactivity was found with antibodies against seasonal coronaviruses. KTRs exhibited lower postvaccination production of neutralizing antibodies against SARS-CoV-2; however, the specificity of their humoral response did not differ compared to healthy subjects.
- MeSH
- COVID-19 * immunology prevention & control MeSH
- Adult MeSH
- Spike Glycoprotein, Coronavirus immunology MeSH
- Immunity, Humoral MeSH
- Middle Aged MeSH
- Humans MeSH
- Antibodies, Neutralizing * blood immunology MeSH
- Transplant Recipients * MeSH
- Antibodies, Viral * blood immunology MeSH
- SARS-CoV-2 * immunology MeSH
- Immunization, Secondary MeSH
- Aged MeSH
- Kidney Transplantation * adverse effects MeSH
- BNT162 Vaccine immunology administration & dosage MeSH
- COVID-19 Vaccines immunology administration & dosage MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with patients having unresectable or metastatic disease at diagnosis, with poor prognosis and very short survival. Given that genetic variation within autophagy-related genes influences autophagic flux and susceptibility to solid cancers, we decided to investigate whether 55,583 single nucleotide polymorphisms (SNPs) within 234 autophagy-related genes could influence the risk of developing PDAC in three large independent cohorts of European ancestry including 12,754 PDAC cases and 324,926 controls. The meta-analysis of these populations identified, for the first time, the association of the BIDrs9604789 variant with an increased risk of developing the disease (ORMeta = 1.31, p = 9.67 × 10-6). We also confirmed the association of TP63rs1515496 and TP63rs35389543 variants with PDAC risk (OR = 0.89, p = 6.27 × 10-8 and OR = 1.16, p = 2.74 × 10-5). Although it is known that BID induces autophagy and TP63 promotes cell growth, cell motility and invasion, we also found that carriers of the TP63rs1515496G allele had increased numbers of FOXP3+ Helios+ T regulatory cells and CD45RA+ T regulatory cells (p = 7.67 × 10-4 and p = 1.56 × 10-3), but also decreased levels of CD4+ T regulatory cells (p = 7.86 × 10-4). These results were in agreement with research suggesting that the TP63rs1515496 variant alters binding sites for FOXA1 and CTCF, which are transcription factors involved in modulating specific subsets of regulatory T cells. In conclusion, this study identifies BID as new susceptibility locus for PDAC and confirms previous studies suggesting that the TP63 gene is involved in the development of PDAC. This study also suggests new pathogenic mechanisms of the TP63 locus in PDAC.
- MeSH
- Autophagy * genetics MeSH
- White People genetics MeSH
- Carcinoma, Pancreatic Ductal * genetics pathology MeSH
- Forkhead Transcription Factors MeSH
- Genetic Predisposition to Disease * MeSH
- Hepatocyte Nuclear Factor 3-alpha genetics metabolism MeSH
- Polymorphism, Single Nucleotide * MeSH
- Cohort Studies MeSH
- Humans MeSH
- Biomarkers, Tumor * genetics MeSH
- Tumor Suppressor Proteins * genetics MeSH
- Pancreatic Neoplasms * genetics pathology MeSH
- Case-Control Studies MeSH
- Transcription Factors genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
Vitamin D je skupina steroidních hormonů. Většina v těle vzniká za pomoci UV záření ze slunce, ale je obsažen v různých potravinách, jako jsou oleje z mořských ryb apod. V těle je postupně hydroxylován na účinný metabolit v játrech a ledvinách. V krvi je transportován bílkovinou VDBP (vitamin D binding protein). Váže se v jádře buňky na receptor VDR (vitamin D Rreceptor). Na koncentraci vitaminu D má vliv mnoho faktorů jako zeměpisná poloha, sezóna (délka slunečního svitu), pigmentace kůže i množství tukové a svalové tkáně. Jeho nejznámější funkcí je regulace kalcio-fosfátového metabolizmu, avšak podílí se rovněž na regulaci buněčného cyklu, indukci apoptózy a také hraje roli v regulaci imunitního systému. Obecně lze říci, že jeho působení vede spíše k imunotoleranci. Nedostatek vitaminu D se v populaci projevuje stále častěji, dnes jím trpí až téměř 50 % evropské populace. Deficience se spojuje s vyšší agresivitou nádorů vč. Nehodgkinových lymfomů a je prokázáno, že pacienti s vyššími hladinami vitaminu D vykazují lepší celkové přežití i dobu do progrese. Nabízí se tedy otázka, zda by suplementace vitaminem D mohla příznivě ovlivnit prognózu pacienta s lymfomy. Výsledky publikovaných studií jsou v tomto ohledu dosud rozporuplné. Navzdory ne zcela jednoznačným výsledkům se uvádí, že suplementace by měla být zvážena u pacientů s insuficientními hladinami vitaminu D.
Vitamin D is a group of steroid hormones, produced with the help of UV radiation of the sun in the skin. It is also contained in various foods such as marine fish oils etc. In the body, it is subsequently transformed into its active form in the liver and kidneys. In the blood, it is transported by the VDBP (vitamin D binding protein). In the cell nucleus, it is bound to the VDR receptor (vitamin D receptor). The concentration of vitamin D in plasma is influenced by many factors: geographical latitude, season (length of sunshine), skin pigmentation, amount of fat, and muscle tissue. The best-known function of vitamin D is the regulation of calcium-phosphate metabolism, but it is involved in many processes such as the regulation of the cell cycle and the induction of apoptosis. It plays a role in the regulation of the immune system as well. Its immunomodulatory action is required for adequate anti-infectious and anti-tumoral immune response. It prevents an exaggerated inflammatory reaction and leads to immunotolerance. Deficiency has become more common in our population, affecting up to 50% of Europeans. Deficiency is also associated with a higher aggressiveness of tumours, including non-Hodgkin lymphomas. It has been shown that higher levels of vitamin D are associated with better overall survival and time to progression. The question is, whether vitamin D supplementation could impact and improve prognosis. Despite the ambiguous results of published studies, vitamin D supplementation should be considered in patients with diagnosed deficiency.
Investigation determines the beneficial effect of bergaptol against gestational diabetes (GD). Gestational diabetes was induced in female rats and treated them with bergaptol 20 and 40 mg/kg for eighteen days. Effect of bergaptol was assessed on blood glucose and insulin level in GD rat. Inflammatory mediators and oxidative stress parameters were also assessed in GD rats. Moreover, mRNA expression of INSR, NF-kappaB, Akt and GSK-3beta were assessed in the GD rats by qRT-PCR method. In silico network pharmacology study was performed, along with gene ontology and egg pathway to assessed the targets of bergaptol, molecular docking study was also performed for the confirmation of possible pathway involved in the management of GD. Blood glucose and insulin level was significantly reduces in the blood bergaptol treated group than GD group of rats. Treatment with bergaptol ameliorates the altered level of mediators of inflammation and oxidative stress parameters in GD rats. There was significant reduction in the mRNA expression of NF-kappaB and GSK-3beta and increase in expression of INSR and Akt in the tissue homogenate of bergaptol treated GD rats. Docking study shows effective binding strength of bergaptol individually with INSR, NF-kappaB, Akt and GSK-3beta-protein targets. In conclusion, data of investigation suggest that bergaptol improves the sensitivity of insulin receptor in GD, as it reduces parameters of oxidative stress and inflammatory mediators by regulating INSR/NF-kappaB/Akt/GSK-3beta pathway. Key words Gestational diabetes, Bergaptol, Insulin resistance, Inflammation, Oxidative stress.
- MeSH
- Diabetes Mellitus, Experimental * drug therapy metabolism MeSH
- Diabetes, Gestational * drug therapy metabolism MeSH
- Insulin Resistance * physiology MeSH
- Glycogen Synthase Kinase 3 beta metabolism MeSH
- Blood Glucose metabolism drug effects MeSH
- Rats MeSH
- Oxidative Stress drug effects MeSH
- Rats, Wistar MeSH
- Receptor, Insulin metabolism MeSH
- Signal Transduction drug effects MeSH
- Molecular Docking Simulation * MeSH
- Pregnancy MeSH
- Inflammation drug therapy metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
To explore the effects and underlying mechanisms of Mdivi-1 on three common clinical models of acute kidney injury (AKI). Three common AKI cell models were constructed, classified into the control group (human renal tubular epithelial cells [HK-2] cells), the Iohexol group (HK-2 cells treated with Iohexol), the Genta group (HK-2 cells treated with Gentamicin), and the Cis group (HK-2 cells treated with Cisplatin). To explore the optimal protective concentration of Mdivi-1 for each AKI cell model, the experimental design consisted of the following seven groups: the control group (HK-2 cells cultured in medium), three injury groups (HK-2 cells subjected to Iohexol, Gentamicin, or Cisplatin), and the corresponding protection groups (with a certain concentration of Mdivi-1 added to each injury group). Cellular survival and apoptosis, reactive oxygen species (ROS) levels, and the expression of recombinant Sirtuin 3 (SIRT3) in each group were measured. Mitochondrial fission and fusion dynamics in cells were observed under an electron microscope. To explore relevant pathways, the changes in relevant pathway proteins were analyzed through Western blotting. The half maximal inhibitory concentration (IC50) values were 150.06 mgI/ml at 6 h in the Iohexol group, 37.88 mg/ml at 24 h in the Gentamicin group, and 13.48 microM at 24 h in the Cisplatin group. Compared with the control group, the three injury groups showed increased cell apoptosis rates and higher expressions of apoptotic proteins in HK-2 cells, with an accompanying decrease in cell migration. After the addition of corresponding concentrations of Mdivi-1, the optimal concentrations were 3 μM in the Iohexo-3 group, 1 microM in the Genta-1 group, and 5 μM in the Cis-5 group, HK-2 cells showed the highest survival rate, reduced apoptosis, decreased mitochondrial ROS and SIRT3 expression, and reduced mitochondrial fission and autophagy when compared with each injury group. Further verification with Western blot analysis after the addition of Mdivi-1 revealed a reduction in the expressions of mitochondrial fission proteins DRP1, Nrf2, SIRT3, Caspase-3, Jun N-terminal Kinase (JNK)/P-JNK, NF-kappaB, Bcl2, and autophagic protein P62, as well as reduced ROS levels. Mdivi-1 had protective effects on the three common AKI cell models by potentially reducing mitochondrial fission in cells and inhibiting the production of ROS through the mediation of the NF- B/JNK/SIRT3 signaling pathway, thereby exerting protective effects. Key words AKI, Cisplatin, Gentamicin, Iohexol, Mdivi-1.
- MeSH
- Acute Kidney Injury * metabolism pathology drug therapy MeSH
- Apoptosis drug effects MeSH
- Cell Line MeSH
- Humans MeSH
- MAP Kinase Signaling System drug effects physiology MeSH
- Mitochondrial Dynamics * drug effects physiology MeSH
- NF-kappa B * metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Signal Transduction * drug effects MeSH
- Sirtuin 3 * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Circular RNAs (circRNAs) make up approximately 10% of the human transcriptome. CircRNAs belong to the broad group of non-coding RNAs and characteristically are formed by backsplicing into a stable circular loop. Their main role is to regulate transcription through the inhibition of miRNAs' expression, termed miRNA sponging. CircRNAs promote tumorigenesis/lymphomagenesis by competitively binding to miRNAs at miRNA binding sites. In diffuse large B-cell lymphoma (DLBCL), several circRNAs have been identified and their expression is related to both progression and response to therapy. DLBCL is the most prevalent and aggressive subtype of B-cell lymphomas and accounts for about 25% to 30% of all non-Hodgkin lymphomas. DLBCL displays great heterogeneity concerning histopathology, biology, and genetics. Patients who have relapsed or have refractory disease after first-line therapy have a very poor prognosis, demonstrating an important unmet need for new treatment options. As more circRNAs are identified in the future, we will better understand their biological roles and potential use in treating cancer, including DLBCL. For example, circAmotl1 promotes nuclear translocation of MYC and upregulation of translational targets of MYC, thus enhancing lymphomagenesis. Another example is circAPC, which is significantly downregulated in DLBCL and correlates with disease aggressiveness and poor prognosis. CircAPC increases expression of the host gene adenomatous polyposis coli (APC), and in doing so inactivates the canonical Wnt/β-catenin signaling and restrains DLBCL growth. MiRNAs belong to the non-coding regulatory molecules that significantly contribute to lymphomagenesis through their target mRNAs. In DLBCL, among the highly expressed miRNAs, are miR-155-5p and miR-21-5p, which regulate NF-ĸB and PI3K/AKT signaling pathways. The aim of this review is to describe the function and mechanism of regulation of circRNAs on miRNAs' expression in DLBCL. This will help us to better understand the regulatory network of circRNA/miRNA/mRNA, and to propose novel therapeutic targets to treat DLBCL.
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Early detection of colorectal cancer (CRC) significantly improves its management and patients' survival. Circular RNAs (circRNAs) are peculiar covalently closed transcripts involved in gene expression modulation whose dysregulation has been extensively reported in CRC cells. However, little is known about their alterations in the early phases of colorectal carcinogenesis. METHODS: In this study, we performed an integrative analysis of circRNA profiles in RNA-sequencing (RNA-Seq) data of 96 colorectal cancers, 27 adenomas, and matched adjacent mucosa tissues. We also investigated the levels of cognate linear transcripts and those of regulating RNA-binding proteins (RBPs). Levels of circRNA-interacting microRNAs (miRNAs) were explored by integrating data of small RNA-Seq performed on the same samples. RESULTS: Our results revealed a significant dysregulation of 34 circRNAs (paired adj. p < 0.05), almost exclusively downregulated in tumor tissues and, prevalently, in early disease stages. This downregulation was associated with decreased expression of circRNA host genes and those encoding for RBPs involved in circRNA biogenesis, including NOVA1, RBMS3, and MBNL1. Guilt-by-association analysis showed that dysregulated circRNAs correlated with increased predicted activity of cell proliferation, DNA repair, and c-Myc signaling pathways. Functional analysis showed interactions among dysregulated circRNAs, RBPs, and miRNAs, which were supported by significant correlations among their expression levels. Findings were validated in independent cohorts and public datasets, and the downregulation of circLPAR1(2,3) and circLINC00632(5) was validated by ddPCR. CONCLUSIONS: These results support that multiple altered regulatory mechanisms may contribute to the reduction of circRNA levels that characterize early colorectal carcinogenesis.
- Publication type
- Journal Article MeSH
A large body of evidence suggests that hypoxia drives aggressive molecular features of malignant cells irrespective of cancer type. Non-Hodgkin lymphomas (NHL) are the most common hematologic malignancies characterized by frequent involvement of diverse hypoxic microenvironments. We studied the impact of long-term deep hypoxia (1% O2) on the biology of lymphoma cells. Only 2 out of 6 tested cell lines (Ramos, and HBL2) survived ≥ 4 weeks under hypoxia. The hypoxia-adapted (HA)b Ramos and HBL2 cells had a decreased proliferation rate accompanied by significant suppression of both oxidative phosphorylation and glycolytic pathways. Transcriptome and proteome analyses revealed marked downregulation of genes and proteins of the mitochondrial respiration complexes I and IV, and mitochondrial ribosomal proteins. Despite the observed suppression of glycolysis, the proteome analysis of both HA cell lines showed upregulation of several proteins involved in the regulation of glucose utilization including the active catalytic component of prolyl-4-hydroxylase P4HA1, an important druggable oncogene. HA cell lines demonstrated increased transcription of key regulators of auto-/mitophagy, e.g., neuritin, BCL2 interacting protein 3 (BNIP3), BNIP3-like protein, and BNIP3 pseudogene. Adaptation to hypoxia was further associated with deregulation of apoptosis, namely upregulation of BCL2L1/BCL-XL, overexpression of BCL2L11/BIM, increased binding of BIM to BCL-XL, and significantly increased sensitivity of both HA cell lines to A1155463, a BCL-XL inhibitor. Finally, in both HA cell lines AKT kinase was hyperphosphorylated and the cells showed increased sensitivity to copanlisib, a pan-PI3K inhibitor. In conclusion, our data report on several shared mechanisms of lymphoma cell adaptation to long-term hypoxia including: 1. Upregulation of proteins responsible for glucose utilization, 2. Degradation of mitochondrial proteins for potential mitochondrial recycling (by mitophagy), and 3. Increased dependence on BCL-XL and PI3K-AKT signaling for survival. In translation, inhibition of glycolysis, BCL-XL, or PI3K-AKT cascade may result in targeted elimination of HA lymphoma cells.
- Publication type
- Journal Article MeSH
Estrogeny jsou klíčové hormony, které hrají zásadní roli ve fyziologii reprodukčního systému u žen. Jejich terapeutické využití v hormonální léčbě, antikoncepci a léčbě hormonálně závislých onemocnění však může být spojeno s řadou nežádoucích účinků, zejména na játra. Tento článek se zaměřuje na mechanismy působení estrogenů a jejich potenciální hepatotoxické účinky, stejně jako na rizikové faktory a možné rozdíly mezi jednotlivými představiteli.
Estrogens are key hormones that play a vital role in the physiology of the reproductive system in women. However, their therapeutic use in hormonal treatment, contraception and the treatment of hormone-dependent diseases may be associated with a number of side effects, especially on the liver. This article focuses on the mechanisms of action of estrogens and their potential hepatotoxic effects, as well as risk factors and possible differences between representatives.
- MeSH
- Estetrol pharmacology MeSH
- Estrogens * pharmacology adverse effects therapeutic use MeSH
- Sex Hormone-Binding Globulin MeSH
- Liver pathology drug effects MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH