Large-scale annotation of biochemically relevant pockets and tunnels in cognate enzyme-ligand complexes

. 2024 Oct 15 ; 16 (1) : 114. [epub] 20241015

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39407342

Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/0008451 Ministerstvo Školství, Mládeže a Tělovýchovy
TN02000109 Technology Agency of the Czech Republic
857560 European Commission
LX22NPO5102 European Union-Next Generation EU
20-15915Y Grantová Agentura České Republiky

Odkazy

PubMed 39407342
PubMed Central PMC11481355
DOI 10.1186/s13321-024-00907-z
PII: 10.1186/s13321-024-00907-z
Knihovny.cz E-zdroje

Tunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a powerful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures is a non-trivial task that can only be addressed computationally. We present a pipeline integrating automated structural analysis with an in-house machine-learning predictor for the annotation of protein pockets, followed by the calculation of the energetics of ligand transport via biochemically relevant tunnels. A thorough validation using eight distinct molecular systems revealed that CaverDock analysis of ligand un/binding is on par with time-consuming molecular dynamics simulations, but much faster. The optimized and validated pipeline was applied to annotate more than 17,000 cognate enzyme-ligand complexes. Analysis of ligand un/binding energetics indicates that the top priority tunnel has the most favourable energies in 75% of cases. Moreover, energy profiles of cognate ligands revealed that a simple geometry analysis can correctly identify tunnel bottlenecks only in 50% of cases. Our study provides essential information for the interpretation of results from tunnel calculation and energy profiling in mechanistic enzymology and protein engineering. We formulated several simple rules allowing identification of biochemically relevant tunnels based on the binding pockets, tunnel geometry, and ligand transport energy profiles.Scientific contributionsThe pipeline introduced in this work allows for the detailed analysis of a large set of protein-ligand complexes, focusing on transport pathways. We are introducing a novel predictor for determining the relevance of binding pockets for tunnel calculation. For the first time in the field, we present a high-throughput energetic analysis of ligand binding and unbinding, showing that approximate methods for these simulations can identify additional mutagenesis hotspots in enzymes compared to purely geometrical methods. The predictor is included in the supplementary material and can also be accessed at https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git . The tunnel data calculated in this study has been made publicly available as part of the ChannelsDB 2.0 database, accessible at https://channelsdb2.biodata.ceitec.cz/ .

Zobrazit více v PubMed

Gora A, Brezovsky J, Damborsky J (2013) Gates of enzymes. Chem Rev 113:5871–5923 PubMed PMC

Brezovsky J, Babkova P, Degtjarik O, Fortova A, Gora A, Iermak I et al (2016) Engineering a de novo transport tunnel. ACS Catal 6:7597–7610

Kokkonen P, Bednar D, Pinto G, Prokop Z, Damborsky J (2019) Engineering enzyme access tunnels. Biotechnol Adv 37:107386 PubMed

Marques SM, Daniel L, Buryska T, Prokop Z, Brezovsky J, Damborsky J (2016) Enzyme tunnels and gates as relevant targets in drug design. Med Res Rev. 10.1002/med.21430 PubMed

Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinform 10:168 PubMed PMC

Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46:W363–W367 PubMed PMC

Krivák R, Hoksza D (2018) P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J Cheminform 10:39 PubMed PMC

Consortium U (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169 PubMed PMC

Furnham N, Holliday GL, de Beer TAP, Jacobsen JOB, Pearson WR, Thornton JM (2014) The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res 42:D485–D489 PubMed PMC

Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B et al (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8:e1002708 PubMed PMC

Berka K, Sehnal D, Bazgier V, Pravda L, Svobodova-Varekova R, Otyepka M et al (2017) Mole 25—tool for detection and analysis of macromolecular pores and channels. Biophys J 112:292a–293a

Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R (2008) MolAxis: a server for identification of channels in macromolecules. Nucleic Acids Res 36(Web Server issue):W210–W215 PubMed PMC

Pravda L, Berka K, Svobodová Vařeková R, Sehnal D, Banáš P, Laskowski RA et al (2014) Anatomy of enzyme channels. BMC Bioinform 15:379 PubMed PMC

Špačková A, Vávra O, Raček T, Bazgier V, Sehnal D, Damborský J et al (2024) ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era. Nucleic Acids Res 52:D413–D418 PubMed PMC

Gelpi J, Hospital A, Goñi R, Orozco M (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bioinform Chem 8:37 PubMed PMC

Filipovic J, Vavra O, Plhak J, Bednar D, Marques SM, Brezovsky J et al (2019) CaverDock: a novel method for the fast analysis of ligand transport. IEEE/ACM Trans Comput Biol Bioinform 17:1–11 PubMed

Sánchez-Aparicio JE, Sciortino G, Herrmannsdoerfer DV, Chueca PO, Pedregal JRG, Maréchal JD (2019) Gpathfinder: identification of ligand-binding pathways by a multi-objective genetic algorithm. Int J Mol Sci 20:3155 PubMed PMC

Nguyen MK, Jaillet L, Redon S (2018) ART-RRT: as-rigid-as-possible exploration of ligand unbinding pathways. J Comput Chem 39:665–678 PubMed

Vavra O, Damborsky J, Bednar D (2022) Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies. Biotechnol Adv 60:108009 PubMed

Pinto GP, Vavra O, Filipovic J, Stourac J, Bednar D, Damborsky J (2019) Fast screening of inhibitor binding/unbinding using novel software tool CaverDock. Front Chem 7:709 PubMed PMC

Pinto GP, Vavra O, Marques SM, Filipovic J, Bednar D, Damborsky J (2021) Screening of world approved drugs against highly dynamical spike glycoprotein of SARS-CoV-2 using CaverDock and machine learning. Comput Struct Biotechnol J 19:3187–3197 PubMed PMC

Rapp LR, Marques SM, Zukic E, Rowlinson B, Sharma M, Grogan G et al (2021) Substrate anchoring and flexibility reduction in CYP153A M.aq leads to highly improved efficiency toward octanoic acid. ACS Catal 11:3182–3189

Papadopoulou A, Meierhofer J, Meyer F, Hayashi T, Schneider S, Sager E et al (2021) Re-programming and optimization of a l-proline cis -4-hydroxylase for the cis-3-halogenation of its native substrate. ChemCatChem 13:3914–3919

Knez D, Colettis N, Iacovino LG, Sova M, Pišlar A, Konc J et al (2020) Stereoselective activity of 1-propargyl-4-styrylpiperidine-like analogues that can discriminate between monoamine oxidase isoforms A and B. J Med Chem 63:1361–1387 PubMed PMC

Wang L, Marciello M, Estévez-Gay M, Soto Rodriguez PED, Luengo Morato Y, Iglesias-Fernández J et al (2020) Enzyme conformation influences the performance of lipase-powered nanomotors. Angew Chemie Int Ed 59:21080–21087 PubMed

Singh PP, Jaiswal AK, Kumar A, Gupta V, Prakash B (2021) Untangling the multi-regime molecular mechanism of verbenol-chemotype Zingiber officinale essential oil against Aspergillus flavus and aflatoxin B1. Sci Rep 11:6832 PubMed PMC

Gutmanas A, Alhroub Y, Battle GM, Berrisford JM, Bochet E, Conroy MJ et al (2014) PDBe: protein data bank in Europe. Nucleic Acids Res 42(Database issue):D285–D291 PubMed PMC

Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G et al (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444 PubMed PMC

Bashton M, Nobeli I, Thornton JM (2006) Cognate ligand domain mapping for enzymes. J Mol Biol 364:836–852 PubMed

Bashton M, Nobeli I, Thornton JM (2008) PROCOGNATE: a cognate ligand domain mapping for enzymes. Nucleic Acids Res 36(Database issue):D618–D622 PubMed PMC

Tyzack JD, Fernando L, Ribeiro AJM, Borkakoti N, Thornton JM (2018) Ranking enzyme structures in the PDB by bound ligand similarity to biological substrates. Structure 26:565-571.e3 PubMed PMC

Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30 PubMed PMC

Fischer JD, Holliday GL, Thornton JM (2010) The CoFactor database: organic cofactors in enzyme catalysis. Bioinformatics 26:2496–2497 PubMed PMC

Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS et al (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39(Database issue):D392–D401 PubMed PMC

Ma J, Wang S (2014) Algorithms, applications, and challenges of protein structure alignment. Adv Protein Chem Struct Biol 94:121–175 PubMed

Pratt JW, Gibbons JD (1981) Kolmogorov–Smirnov two-sample tests. In: Concepts of Nonparametric Theory. Springer Series in Statistics. Springer, New York, NY, p 318–344. ISBN: 978-1-4612-5931-2. 10.1007/978-1-4612-5931-2_7

Vavra O, Filipovic J, Plhak J, Bednar D, Marques SM, Brezovsky J et al (2019) CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics 35:4986–4993 PubMed

Rahman SA, Torrance G, Baldacci L, Martínez Cuesta S, Fenninger F, Gopal N et al (2016) Reaction Decoder Tool (RDT): extracting features from chemical reactions. Bioinformatics 32:2065–2066 PubMed PMC

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791 PubMed PMC

Ozer G, Quirk S, Hernandez R (2012) Adaptive steered molecular dynamics: validation of the selection criterion and benchmarking energetics in vacuum. J Chem Phys 136:215104 PubMed

Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693

Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM et al (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688 PubMed PMC

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33 PubMed PMC

Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC et al (2011) R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39(suppl_2):W511–W517 PubMed PMC

Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33(Web Server issue):W368–W371 PubMed PMC

Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713 PubMed PMC

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9:3878–3888 PubMed

Le Grand S, Götz AW, Walker RC (2013) SPFP: speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput Phys Commun 184:374–380

Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

Miao Y, Bhattarai A, Wang J (2020) Ligand Gaussian accelerated molecular dynamics (LiGaMD): characterization of ligand binding thermodynamics and kinetics. J Chem Theory Comput 16:5526–5547 PubMed PMC

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A et al (2024) Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630:493–500 PubMed PMC

Hekkelman ML, de Vries I, Joosten RP, Perrakis A (2023) AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat Methods 20:205–213 PubMed PMC

Varadi M, Anyango S, Armstrong D, Berrisford J, Choudhary P, Deshpande M et al (2022) PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Res 50:D534–D542 PubMed PMC

Lee PH, Kuo KL, Chu PY, Liu EM, Lin JH (2009) SLITHER: a web server for generating contiguous conformations of substrate molecules entering into deep active sites of proteins or migrating through channels in membrane transporters. Nucleic Acids Res 37(Web Server issue):W559–W564 PubMed PMC

Devaurs D, Bouard L, Vaisset M, Zanon C, Al-Bluwi I, Iehl R et al (2013) MoMA-LigPath: a web server to simulate protein–ligand unbinding. Nucleic Acids Res 41(Web Server issue):W297–W302 PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era

. 2024 Jan 05 ; 52 (D1) : D413-D418.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...