Caver Web 2.0: analysis of tunnels and ligand transport in dynamic ensembles of proteins
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
25-18233M
Czech National Foundation
CZ.02.01.01/00/23_029/0008437
Ministry of Education
CA21162
European Union's Horizon 2020
LM2023055
Ministry of Education, Youth, and Sports of the Czech Republic
857560
European Union's Horizon 2020
101136607
European Union's Horizon 2020
LM2018140
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
40337920
PubMed Central
PMC12230698
DOI
10.1093/nar/gkaf399
PII: 8126903
Knihovny.cz E-zdroje
- MeSH
- internet MeSH
- katalytická doména MeSH
- konformace proteinů MeSH
- ligandy MeSH
- objevování léků MeSH
- proteiny * chemie metabolismus MeSH
- simulace molekulární dynamiky MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ligandy MeSH
- proteiny * MeSH
Enzymes with buried active sites utilize molecular tunnels to exchange substrates, products, and solvent molecules with the surface. These transport mechanisms are crucial for protein function and influence various properties. As proteins are inherently dynamic, their tunnels also vary structurally. Understanding these dynamics is essential for elucidating structure-function relationships, drug discovery, and bioengineering. Caver Web 2.0 is a user-friendly web server that retains all Caver Web 1.0 functionalities while introducing key improvements: (i) generation of dynamic ensembles via automated molecular dynamics with YASARA, (ii) analysis of dynamic tunnels with CAVER 3.0, (iii) prediction of ligand trajectories in multiple snapshots with CaverDock 1.2, and (iv) customizable ligand libraries for virtual screening. Users can assess protein flexibility, identify and characterize tunnels, and predict ligand trajectories and energy profiles in both static and dynamic structures. Additionally, the platform supports virtual screening with FDA/EMA-approved drugs and user-defined datasets. Caver Web 2.0 is a versatile tool for biological research, protein engineering, and drug discovery, aiding the identification of strong inhibitors or new substrates to bind to the active sites or tunnels, and supporting drug repurposing efforts. The server is freely accessible at https://loschmidt.chemi.muni.cz/caverweb.
Institute of Computer Science Masaryk University 60200 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 65691 Brno Czech Republic
Zobrazit více v PubMed
Pravda L, Berka K, Svobodová Vařeková R et al. Anatomy of enzyme channels. BMC Bioinformatics. 2014; 15:379. 10.1186/s12859-014-0379-x. PubMed DOI PMC
Kaushik S, Marques SM, Khirsariya P et al. Impact of the access tunnel engineering on catalysis is strictly ligand-specific. FEBS J. 2018; 285:1456–76. 10.1111/febs.14418. PubMed DOI
Kokkonen P, Bednar D, Pinto G et al. Engineering enzyme access tunnels. Biotechnol Adv. 2019; 37:107386. 10.1016/j.biotechadv.2019.04.008. PubMed DOI
Planas-Iglesias J, Marques SM, Pinto GP et al. Computational design of enzymes for biotechnological applications. Biotechnol Adv. 2021; 47:107696. 10.1016/j.biotechadv.2021.107696. PubMed DOI
Sharma B, Purohit R Enhanced sampling simulations to explore himalayan phytochemicals as potential phosphodiesterase-1 inhibitor for neurological disorders. Biochem Biophys Res Commun. 2025; 758:151614. 10.1016/j.bbrc.2025.151614. PubMed DOI
Marques SM, Planas-Iglesias J, Damborsky J Web-based tools for computational enzyme design. Curr Opin Struct Biol. 2021; 69:19–34. 10.1016/j.sbi.2021.01.010. PubMed DOI
Sequeiros-Borja CE, Surpeta B, Brezovsky J Recent advances in user-friendly computational tools to engineer protein function. Brief Bioinform. 2021; 22:bbaa150. 10.1093/bib/bbaa150. PubMed DOI PMC
Stourac J, Vavra O, Kokkonen P et al. Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res. 2019; 47:W414–22. 10.1093/nar/gkz378. PubMed DOI PMC
Musil M, Jezik A, Jankujova M et al. Fully automated virtual screening pipeline of FDA-approved drugs using Caver Web. Comput Struct Biotechnol J. 2022; 20:6512–8. 10.1016/j.csbj.2022.11.031. PubMed DOI PMC
Chovancová E, Pavelka A, Benes P et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012; 8:e1002708. 10.1371/journal.pcbi.1002708. PubMed DOI PMC
Vavra O, Filipovic J, Plhak J et al. CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics. 2019; 35:4986–93. 10.1093/bioinformatics/btz386. PubMed DOI
Vavra O, Damborsky J, Bednar D Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies. Biotechnol Adv. 2022; 60:108009. 10.1016/j.biotechadv.2022.108009. PubMed DOI
de Melo JJC, Gonçalves JR, Brandão LM et al. Evaluation of lipase access tunnels and analysis of substance transport in comparison with experimental data. Bioprocess Biosyst Eng. 2022; 45:1149–62. 10.1007/s00449-022-02731-x. PubMed DOI
Kim J-H, Park CM, Jeong HC et al. Production of derivatives of α-terpineol by bacterial CYP102A1 enzymes. Biotechnol Lett. 2025; 47:1. 10.1007/s10529-024-03540-w. PubMed DOI
Afshinpour M, Parsi P, Mahdiuni H Investigation of molecular details of a bacterial cationic amino acid transporter (GkApcT) during arginine transportation using molecular dynamics simulation and umbrella sampling techniques. J Mol Model. 2023; 29:260. 10.1007/s00894-023-05670-w. PubMed DOI
Haas J, Beck E, Troczka BJ et al. A conserved hymenopteran-specific family of cytochrome P450s protects bee pollinators from toxic nectar alkaloids. Sci Adv. 2023; 9:eadg0885. 10.1126/sciadv.adg0885. PubMed DOI PMC
Bunzel HA, Anderson JLR, Hilvert D et al. Evolution of dynamical networks enhances catalysis in a designer enzyme. Nat Chem. 2021; 13:1017–22. 10.1038/s41557-021-00763-6. PubMed DOI
Godehard SP, Badenhorst CPS, Müller H et al. Protein engineering for enhanced acyltransferase activity, substrate scope, and selectivity of the mycobacterium smegmatis acyltransferase MsAcT. ACS Catal. 2020; 10:7552–62. 10.1021/acscatal.0c01767. DOI
Fan S, Qin M, Wang Q et al. Semirationally engineering an efficient P450 peroxygenase for regio- and enantioselective hydroxylation of steroids. ACS Catal. 2025; 15:2977–86. 10.1021/acscatal.4c06342. DOI
Song W, Xu X, Gao C et al. Open gate of Corynebacterium glutamicum threonine deaminase for efficient synthesis of bulky α-keto acids. ACS Catal. 2020; 10:9994–10004. 10.1021/acscatal.0c01672. DOI
Rapp LR, Marques SM, Zukic E et al. Substrate anchoring and flexibility reduction in CYP153AM.Aq leads to highly improved efficiency toward octanoic acid. ACS Catal. 2021; 11:3182–9. 10.1021/acscatal.0c05193. DOI
Knez D, Colettis N, Iacovino LG et al. Stereoselective activity of 1-propargyl-4-styrylpiperidine-like analogues that can discriminate between monoamine oxidase isoforms A and B. J Med Chem. 2020; 63:1361–87. 10.1021/acs.jmedchem.9b01886. PubMed DOI PMC
Singh PP, Jaiswal AK, Kumar A et al. Untangling the multi-regime molecular mechanism of verbenol-chemotype zingiber officinale essential oil against Aspergillus flavus and aflatoxin B1. Sci Rep. 2021; 11:6832. 10.1038/s41598-021-86253-8. PubMed DOI PMC
Zhao P, Kong F, Jiang Y et al. Enabling peroxygenase activity in cytochrome P450 monooxygenases by engineering hydrogen peroxide tunnels. J Am Chem Soc. 2023; 145:5506–11. 10.1021/jacs.3c00195. PubMed DOI
Lu L, Wang X, Wang T et al. A bacterial platform for producing aromatic esters from glycerol. Nat Chem Eng. 2024; 1:751–64. 10.1038/s44286-024-00148-9. DOI
Pinto GP, Vavra O, Marques SM et al. Screening of world approved drugs against highly dynamical spike glycoprotein of SARS-CoV-2 using CaverDock and machine learning. Comput Struct Biotechnol J. 2021; 19:3187–97. 10.1016/j.csbj.2021.05.043. PubMed DOI PMC
Truong DT, Ho K, Pham DQH et al. Treatment of flexibility of protein backbone in simulations of protein–ligand interactions using steered molecular dynamics. Sci Rep. 2024; 14:10475. 10.1038/s41598-024-59899-3. PubMed DOI PMC
Truong DT, Ho K, Nhi HTY et al. Imidazole[1, 5-a]pyridine derivatives as EGFR tyrosine kinase inhibitors unraveled by umbrella sampling and steered molecular dynamics simulations. Sci Rep. 2024; 14:12218. 10.1038/s41598-024-62743-3. PubMed DOI PMC
James LC, Tawfik DS Conformational diversity and protein evolution – a 60-year-old hypothesis revisited. Trends Biochem Sci. 2003; 28:361–8. 10.1016/S0968-0004(03)00135-X. PubMed DOI
Campbell E, Kaltenbach M, Correy GJ et al. The role of protein dynamics in the evolution of new enzyme function. Nat Chem Biol. 2016; 12:944–50. 10.1038/nchembio.2175. PubMed DOI
Johansson KE, Lindorff-Larsen K Structural heterogeneity and dynamics in protein evolution and design. Curr Opin Struct Biol. 2018; 48:157–63. 10.1016/j.sbi.2018.01.010. PubMed DOI
Corbella M, Pinto GP, Kamerlin SCL Loop dynamics and the evolution of enzyme activity. Nat Rev Chem. 2023; 7:536–47. 10.1038/s41570-023-00495-w. PubMed DOI
Kingsley LJ, Lill MA Substrate tunnels in enzymes: structure-function relationships and computational methodology. Proteins. 2015; 83:599–611. 10.1002/prot.24772. PubMed DOI PMC
Marques SM, Dunajova Z, Prokop Z et al. Catalytic cycle of haloalkane dehalogenases toward unnatural substrates explored by computational modeling. J Chem Inf Model. 2017; 57:1970–89. 10.1021/acs.jcim.7b00070. PubMed DOI
Vavra O, Tyzack J, Haddadi F et al. Large-scale annotation of biochemically relevant pockets and tunnels in cognate enzyme–ligand complexes. J Cheminform. 2024; 16:114. 10.1186/s13321-024-00907-z. PubMed DOI PMC
Krieger E, Vriend G YASARA view—molecular graphics for all devices—from smartphones to workstations. Bioinformatics. 2014; 30:2981–2. 10.1093/bioinformatics/btu426. PubMed DOI PMC
Krieger E, Vriend G New ways to boost molecular dynamics simulations. J Comput Chem. 2015; 36:996–1007. 10.1002/jcc.23899. PubMed DOI PMC
Berman HM, Westbrook J, Feng Z et al. The Protein Data Bank. Nucleic Acids Res. 2000; 28:235–42. 10.1093/nar/28.1.235. PubMed DOI PMC
Le Guilloux V, Schmidtke P, Tuffery P Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009; 10:168. 10.1186/1471-2105-10-168. PubMed DOI PMC
Pavelka A, Sebestova E, Kozlikova B et al. CAVER: algorithms for analyzing dynamics of tunnels in macromolecules. IEEE/ACM Trans Comput Biol Bioinform. 2015; 13:505–17. 10.1109/TCBB.2015.2459680. PubMed DOI
Sehnal D, Bittrich S, Deshpande M et al. Mol* viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021; 49:W431–7. 10.1093/nar/gkab314. PubMed DOI PMC
Maier JA, Martinez C, Kasavajhala K et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015; 11:3696–713. 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Krieger E, Darden T, Nabuurs SB et al. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins. 2004; 57:678–83. 10.1002/prot.20251. PubMed DOI
Wang S, Ma J, Peng J et al. Protein structure alignment beyond spatial proximity. Sci Rep. 2013; 3:1448. 10.1038/srep01448. PubMed DOI PMC
Murtagh F Complexities of hierarchic clustering algorithms: state of the art. Comput Stat. 1984; 1:101–13.https://thames.cs.rhul.ac.uk/∼fionn/strule/old-articles/complexities/.
Galgonek J, Vondrášek J IDSM ChemWebRDF: sPARQLing small-molecule datasets. J Cheminform. 2021; 13:38. 10.1186/s13321-021-00515-1. PubMed DOI PMC
Irwin JJ, Tang KG, Young J et al. ZINC20—A free ultralarge-scale chemical database for Ligand discovery. J Chem Inf Model. 2020; 60:6065–73. 10.1021/acs.jcim.0c00675. PubMed DOI PMC
Bienfait B, Ertl P JSME: a free molecule editor in JavaScript. J Cheminform. 2013; 5:24. 10.1186/1758-2946-5-24. PubMed DOI PMC
O’Boyle NM, Banck M, James CA et al. Open Babel: an open chemical toolbox. J Cheminform. 2011; 3:33. 10.1186/1758-2946-3-33. PubMed DOI PMC
Morris GM, Huey R, Lindstrom W et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009; 30:2785–91. 10.1002/jcc.21256. PubMed DOI PMC
Filipovič J, Vávra O, Plhák J et al. CaverDock: a novel method for the fast analysis of Ligand transport. IEEE/ACM Trans Comput Biol Bioinform. 2020; 17:1625–38. 10.1109/tcbb.2019.2907492. PubMed DOI
Trott O, Olson AJ AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31:455–61. 10.1002/jcc.21334. PubMed DOI PMC
Koudelakova T, Chovancova E, Brezovsky J et al. Substrate specificity of haloalkane dehalogenases. Biochem J. 2011; 435:345–54. 10.1042/BJ20101405. PubMed DOI
Brezovsky J, Babkova P, Degtjarik O et al. Engineering a DOI
Volk AA, Epps RW, Yonemoto DT et al. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat Commun. 2023; 14:1403. 10.1038/s41467-023-37139-y. PubMed DOI PMC
Jing B, Berger B, Jaakkola T AlphaFold meets flow matching for generating protein ensembles. arXiv2 September 2024, preprint: not peer reviewed 10.48550/arXiv.2402.04845. DOI
Lewis S, Hempel T, Jiménez-Luna J et al. Scalable emulation of protein equilibrium ensembles with generative deep learning. 2025; bioRxiv5 December 2024, preprint: not peer reviewed 10.1101/2024.12.05.626885. DOI