Caver Web 2.0: analysis of tunnels and ligand transport in dynamic ensembles of proteins

. 2025 Jul 07 ; 53 (W1) : W132-W142.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40337920

Grantová podpora
25-18233M Czech National Foundation
CZ.02.01.01/00/23_029/0008437 Ministry of Education
CA21162 European Union's Horizon 2020
LM2023055 Ministry of Education, Youth, and Sports of the Czech Republic
857560 European Union's Horizon 2020
101136607 European Union's Horizon 2020
LM2018140 Ministry of Education, Youth, and Sports of the Czech Republic

Enzymes with buried active sites utilize molecular tunnels to exchange substrates, products, and solvent molecules with the surface. These transport mechanisms are crucial for protein function and influence various properties. As proteins are inherently dynamic, their tunnels also vary structurally. Understanding these dynamics is essential for elucidating structure-function relationships, drug discovery, and bioengineering. Caver Web 2.0 is a user-friendly web server that retains all Caver Web 1.0 functionalities while introducing key improvements: (i) generation of dynamic ensembles via automated molecular dynamics with YASARA, (ii) analysis of dynamic tunnels with CAVER 3.0, (iii) prediction of ligand trajectories in multiple snapshots with CaverDock 1.2, and (iv) customizable ligand libraries for virtual screening. Users can assess protein flexibility, identify and characterize tunnels, and predict ligand trajectories and energy profiles in both static and dynamic structures. Additionally, the platform supports virtual screening with FDA/EMA-approved drugs and user-defined datasets. Caver Web 2.0 is a versatile tool for biological research, protein engineering, and drug discovery, aiding the identification of strong inhibitors or new substrates to bind to the active sites or tunnels, and supporting drug repurposing efforts. The server is freely accessible at https://loschmidt.chemi.muni.cz/caverweb.

Zobrazit více v PubMed

Pravda  L, Berka  K, Svobodová  Vařeková R  et al.  Anatomy of enzyme channels. BMC Bioinformatics. 2014; 15:379. 10.1186/s12859-014-0379-x. PubMed DOI PMC

Kaushik  S, Marques  SM, Khirsariya  P  et al.  Impact of the access tunnel engineering on catalysis is strictly ligand-specific. FEBS J. 2018; 285:1456–76. 10.1111/febs.14418. PubMed DOI

Kokkonen  P, Bednar  D, Pinto  G  et al.  Engineering enzyme access tunnels. Biotechnol Adv. 2019; 37:107386. 10.1016/j.biotechadv.2019.04.008. PubMed DOI

Planas-Iglesias  J, Marques  SM, Pinto  GP  et al.  Computational design of enzymes for biotechnological applications. Biotechnol Adv. 2021; 47:107696. 10.1016/j.biotechadv.2021.107696. PubMed DOI

Sharma  B, Purohit  R  Enhanced sampling simulations to explore himalayan phytochemicals as potential phosphodiesterase-1 inhibitor for neurological disorders. Biochem Biophys Res Commun. 2025; 758:151614. 10.1016/j.bbrc.2025.151614. PubMed DOI

Marques  SM, Planas-Iglesias  J, Damborsky  J  Web-based tools for computational enzyme design. Curr Opin Struct Biol. 2021; 69:19–34. 10.1016/j.sbi.2021.01.010. PubMed DOI

Sequeiros-Borja  CE, Surpeta  B, Brezovsky  J  Recent advances in user-friendly computational tools to engineer protein function. Brief Bioinform. 2021; 22:bbaa150. 10.1093/bib/bbaa150. PubMed DOI PMC

Stourac  J, Vavra  O, Kokkonen  P  et al.  Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res. 2019; 47:W414–22. 10.1093/nar/gkz378. PubMed DOI PMC

Musil  M, Jezik  A, Jankujova  M  et al.  Fully automated virtual screening pipeline of FDA-approved drugs using Caver Web. Comput Struct Biotechnol J. 2022; 20:6512–8. 10.1016/j.csbj.2022.11.031. PubMed DOI PMC

Chovancová  E, Pavelka  A, Benes  P  et al.  CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012; 8:e1002708. 10.1371/journal.pcbi.1002708. PubMed DOI PMC

Vavra  O, Filipovic  J, Plhak  J  et al.  CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics. 2019; 35:4986–93. 10.1093/bioinformatics/btz386. PubMed DOI

Vavra  O, Damborsky  J, Bednar  D  Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies. Biotechnol Adv. 2022; 60:108009. 10.1016/j.biotechadv.2022.108009. PubMed DOI

de Melo  JJC, Gonçalves  JR, Brandão  LM  et al.  Evaluation of lipase access tunnels and analysis of substance transport in comparison with experimental data. Bioprocess Biosyst Eng. 2022; 45:1149–62. 10.1007/s00449-022-02731-x. PubMed DOI

Kim  J-H, Park  CM, Jeong  HC  et al.  Production of derivatives of α-terpineol by bacterial CYP102A1 enzymes. Biotechnol Lett. 2025; 47:1. 10.1007/s10529-024-03540-w. PubMed DOI

Afshinpour  M, Parsi  P, Mahdiuni  H  Investigation of molecular details of a bacterial cationic amino acid transporter (GkApcT) during arginine transportation using molecular dynamics simulation and umbrella sampling techniques. J Mol Model. 2023; 29:260. 10.1007/s00894-023-05670-w. PubMed DOI

Haas  J, Beck  E, Troczka  BJ  et al.  A conserved hymenopteran-specific family of cytochrome P450s protects bee pollinators from toxic nectar alkaloids. Sci Adv. 2023; 9:eadg0885. 10.1126/sciadv.adg0885. PubMed DOI PMC

Bunzel  HA, Anderson  JLR, Hilvert  D  et al.  Evolution of dynamical networks enhances catalysis in a designer enzyme. Nat Chem. 2021; 13:1017–22. 10.1038/s41557-021-00763-6. PubMed DOI

Godehard  SP, Badenhorst  CPS, Müller  H  et al.  Protein engineering for enhanced acyltransferase activity, substrate scope, and selectivity of the mycobacterium smegmatis acyltransferase MsAcT. ACS Catal. 2020; 10:7552–62. 10.1021/acscatal.0c01767. DOI

Fan  S, Qin  M, Wang  Q  et al.  Semirationally engineering an efficient P450 peroxygenase for regio- and enantioselective hydroxylation of steroids. ACS Catal. 2025; 15:2977–86. 10.1021/acscatal.4c06342. DOI

Song  W, Xu  X, Gao  C  et al.  Open gate of Corynebacterium glutamicum threonine deaminase for efficient synthesis of bulky α-keto acids. ACS Catal. 2020; 10:9994–10004. 10.1021/acscatal.0c01672. DOI

Rapp  LR, Marques  SM, Zukic  E  et al.  Substrate anchoring and flexibility reduction in CYP153AM.Aq leads to highly improved efficiency toward octanoic acid. ACS Catal. 2021; 11:3182–9. 10.1021/acscatal.0c05193. DOI

Knez  D, Colettis  N, Iacovino  LG  et al.  Stereoselective activity of 1-propargyl-4-styrylpiperidine-like analogues that can discriminate between monoamine oxidase isoforms A and B. J Med Chem. 2020; 63:1361–87. 10.1021/acs.jmedchem.9b01886. PubMed DOI PMC

Singh  PP, Jaiswal  AK, Kumar  A  et al.  Untangling the multi-regime molecular mechanism of verbenol-chemotype zingiber officinale essential oil against Aspergillus flavus and aflatoxin B1. Sci Rep. 2021; 11:6832. 10.1038/s41598-021-86253-8. PubMed DOI PMC

Zhao  P, Kong  F, Jiang  Y  et al.  Enabling peroxygenase activity in cytochrome P450 monooxygenases by engineering hydrogen peroxide tunnels. J Am Chem Soc. 2023; 145:5506–11. 10.1021/jacs.3c00195. PubMed DOI

Lu  L, Wang  X, Wang  T  et al.  A bacterial platform for producing aromatic esters from glycerol. Nat Chem Eng. 2024; 1:751–64. 10.1038/s44286-024-00148-9. DOI

Pinto  GP, Vavra  O, Marques  SM  et al.  Screening of world approved drugs against highly dynamical spike glycoprotein of SARS-CoV-2 using CaverDock and machine learning. Comput Struct Biotechnol J. 2021; 19:3187–97. 10.1016/j.csbj.2021.05.043. PubMed DOI PMC

Truong  DT, Ho  K, Pham  DQH  et al.  Treatment of flexibility of protein backbone in simulations of protein–ligand interactions using steered molecular dynamics. Sci Rep. 2024; 14:10475. 10.1038/s41598-024-59899-3. PubMed DOI PMC

Truong  DT, Ho  K, Nhi  HTY  et al.  Imidazole[1, 5-a]pyridine derivatives as EGFR tyrosine kinase inhibitors unraveled by umbrella sampling and steered molecular dynamics simulations. Sci Rep. 2024; 14:12218. 10.1038/s41598-024-62743-3. PubMed DOI PMC

James  LC, Tawfik  DS  Conformational diversity and protein evolution – a 60-year-old hypothesis revisited. Trends Biochem Sci. 2003; 28:361–8. 10.1016/S0968-0004(03)00135-X. PubMed DOI

Campbell  E, Kaltenbach  M, Correy  GJ  et al.  The role of protein dynamics in the evolution of new enzyme function. Nat Chem Biol. 2016; 12:944–50. 10.1038/nchembio.2175. PubMed DOI

Johansson  KE, Lindorff-Larsen  K  Structural heterogeneity and dynamics in protein evolution and design. Curr Opin Struct Biol. 2018; 48:157–63. 10.1016/j.sbi.2018.01.010. PubMed DOI

Corbella  M, Pinto  GP, Kamerlin  SCL  Loop dynamics and the evolution of enzyme activity. Nat Rev Chem. 2023; 7:536–47. 10.1038/s41570-023-00495-w. PubMed DOI

Kingsley  LJ, Lill  MA  Substrate tunnels in enzymes: structure-function relationships and computational methodology. Proteins. 2015; 83:599–611. 10.1002/prot.24772. PubMed DOI PMC

Marques  SM, Dunajova  Z, Prokop  Z  et al.  Catalytic cycle of haloalkane dehalogenases toward unnatural substrates explored by computational modeling. J Chem Inf Model. 2017; 57:1970–89. 10.1021/acs.jcim.7b00070. PubMed DOI

Vavra  O, Tyzack  J, Haddadi  F  et al.  Large-scale annotation of biochemically relevant pockets and tunnels in cognate enzyme–ligand complexes. J Cheminform. 2024; 16:114. 10.1186/s13321-024-00907-z. PubMed DOI PMC

Krieger  E, Vriend  G  YASARA view—molecular graphics for all devices—from smartphones to workstations. Bioinformatics. 2014; 30:2981–2. 10.1093/bioinformatics/btu426. PubMed DOI PMC

Krieger  E, Vriend  G  New ways to boost molecular dynamics simulations. J Comput Chem. 2015; 36:996–1007. 10.1002/jcc.23899. PubMed DOI PMC

Berman  HM, Westbrook  J, Feng  Z  et al.  The Protein Data Bank. Nucleic Acids Res. 2000; 28:235–42. 10.1093/nar/28.1.235. PubMed DOI PMC

Le  Guilloux V, Schmidtke  P, Tuffery  P  Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009; 10:168. 10.1186/1471-2105-10-168. PubMed DOI PMC

Pavelka  A, Sebestova  E, Kozlikova  B  et al.  CAVER: algorithms for analyzing dynamics of tunnels in macromolecules. IEEE/ACM Trans Comput Biol Bioinform. 2015; 13:505–17. 10.1109/TCBB.2015.2459680. PubMed DOI

Sehnal  D, Bittrich  S, Deshpande  M  et al.  Mol* viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021; 49:W431–7. 10.1093/nar/gkab314. PubMed DOI PMC

Maier  JA, Martinez  C, Kasavajhala  K  et al.  ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015; 11:3696–713. 10.1021/acs.jctc.5b00255. PubMed DOI PMC

Krieger  E, Darden  T, Nabuurs  SB  et al.  Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins. 2004; 57:678–83. 10.1002/prot.20251. PubMed DOI

Wang  S, Ma  J, Peng  J  et al.  Protein structure alignment beyond spatial proximity. Sci Rep. 2013; 3:1448. 10.1038/srep01448. PubMed DOI PMC

Murtagh  F  Complexities of hierarchic clustering algorithms: state of the art. Comput Stat. 1984; 1:101–13.https://thames.cs.rhul.ac.uk/∼fionn/strule/old-articles/complexities/.

Galgonek  J, Vondrášek  J  IDSM ChemWebRDF: sPARQLing small-molecule datasets. J Cheminform. 2021; 13:38. 10.1186/s13321-021-00515-1. PubMed DOI PMC

Irwin  JJ, Tang  KG, Young  J  et al.  ZINC20—A free ultralarge-scale chemical database for Ligand discovery. J Chem Inf Model. 2020; 60:6065–73. 10.1021/acs.jcim.0c00675. PubMed DOI PMC

Bienfait  B, Ertl  P  JSME: a free molecule editor in JavaScript. J Cheminform. 2013; 5:24. 10.1186/1758-2946-5-24. PubMed DOI PMC

O’Boyle  NM, Banck  M, James  CA  et al.  Open Babel: an open chemical toolbox. J Cheminform. 2011; 3:33. 10.1186/1758-2946-3-33. PubMed DOI PMC

Morris  GM, Huey  R, Lindstrom  W  et al.  AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009; 30:2785–91. 10.1002/jcc.21256. PubMed DOI PMC

Filipovič  J, Vávra  O, Plhák  J  et al.  CaverDock: a novel method for the fast analysis of Ligand transport. IEEE/ACM Trans Comput Biol Bioinform. 2020; 17:1625–38. 10.1109/tcbb.2019.2907492. PubMed DOI

Trott  O, Olson  AJ  AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31:455–61. 10.1002/jcc.21334. PubMed DOI PMC

Koudelakova  T, Chovancova  E, Brezovsky  J  et al.  Substrate specificity of haloalkane dehalogenases. Biochem J. 2011; 435:345–54. 10.1042/BJ20101405. PubMed DOI

Brezovsky  J, Babkova  P, Degtjarik  O  et al.  Engineering a DOI

Volk  AA, Epps  RW, Yonemoto  DT  et al.  AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat Commun. 2023; 14:1403. 10.1038/s41467-023-37139-y. PubMed DOI PMC

Jing  B, Berger  B, Jaakkola  T  AlphaFold meets flow matching for generating protein ensembles. arXiv2 September 2024, preprint: not peer reviewed 10.48550/arXiv.2402.04845. DOI

Lewis  S, Hempel  T, Jiménez-Luna  J  et al.  Scalable emulation of protein equilibrium ensembles with generative deep learning. 2025; bioRxiv5 December 2024, preprint: not peer reviewed 10.1101/2024.12.05.626885. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...