Differences in susceptibility to photoinhibition do not determine growth rate under moderate light in batch or turbidostat - a study with five green algae
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39649001
PubMed Central
PMC11559472
DOI
10.32615/ps.2021.054
PII: PS60010
Knihovny.cz E-zdroje
- Klíčová slova
- Chlorococcum novae-angliae, Desmodesmus quadricauda, Ettlia oleoabundans, Scenedesmus ecornis, Scenedesmus obliquus, microalga, photodamage, photoinactivation, rapid light curve,
- Publikační typ
- časopisecké články MeSH
To understand growth limitations of photosynthetic microorganisms, and to investigate whether batch growth or certain photosynthesis-related parameters predict a turbidostat (continuous growth at constant biomass concentration) growth rate, five green algal species were grown in a photobioreactor in batch and turbidostat conditions and their susceptibilities to photoinhibition of photosystem II as well as several photosynthetic parameters were measured. Growth rates during batch and turbidostat modes varied independently of each other; thus, a growth rate measured in a batch cannot be used to determine the continuous growth rate. Greatly different photoinhibition susceptibilities in tested algae suggest that different amounts of energy were invested in repair. However, photoinhibition tolerance did not necessarily lead to a fast growth rate at a moderate light intensity. Nevertheless, we report an inverse relationship between photoinhibition tolerance and minimum saturating irradiance, suggesting that fast electron transfer capacity of PSII comes with the price of reduced photoinhibition tolerance.
Zobrazit více v PubMed
Barbera E., Grandi A., Borella L. et al.: Continuous cultivation as a method to assess the maximum specific growth rate of photosynthetic organisms. – Front. Bioeng. Biotechnol. 7: 274, 2019. https://www.frontiersin.org/articles/10.3389/fbioe.2019.00274/full PubMed DOI PMC
Barranguet C., Kromkamp J.: Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos. – Mar. Ecol. Prog. Ser. 204: 39-52, 2000. http://www.int-res.com/abstracts/meps/v204/p39-52/
Borowitzka M.A., Vonshak A.: Scaling up microalgal cultures to commercial scale. – Eur. J. Phycol. 52: 407-418, 2017. https://www.tandfonline.com/doi/full/10.1080/09670262.2017.1365177 DOI
Campbell D.A., Serôdio J.: Photoinhibition of photosystem II in phytoplankton: processes and patterns. – In: Larkum A., Grossman A., Raven J. (ed.): Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes). Vol. 45. Pp. 329-365. Springer, Cham: 2020. https://link.springer.com/chapter/10.1007%2F978-3-030-33397-3_13
Eilers P.H.C., Peeters J.C.H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. – Ecol. Model. 42: 199-215, 1988. https://www.sciencedirect.com/science/article/pii/0304380088900579?via%3Dihub
Flynn K.J.: Going for the slow burn: why should possession of a low maximum growth rate be advantageous for microalgae? – Plant Ecol. Divers. 2: 179-189, 2009. https://www.tandfonline.com/doi/full/10.1080/17550870903207268 DOI
García-Cubero R., Kleinegris D.M.M., Barbosa M.J.: Predicting biomass and hydrocarbon productivities and colony size in continuous cultures of Botryococcus braunii showa. – Bioresource Technol. 340: 125653, 2021. PubMed
Grobbelaar J.U., Nedbal L., Tichý V.: Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. – J. Appl. Phycol. 8: 335-343, 1996. https://link.springer.com/article/10.1007/BF02178576 DOI
Hindersin S., Leupold M., Kerner M., Hanelt D.: Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors. – Bioprocess Biosyst. Eng. 36: 345-355, 2013. https://link.springer.com/article/10.1007/s00449-012-0790-5 PubMed DOI
Inskeep W.P., Bloom P.R.: Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. – Plant Physiol. 77: 483-485, 1985. https://academic.oup.com/plphys/article/77/2/483/6081863 PubMed PMC
Komenda J.: Photosystem 2 photoinactivation and repair in the Scenedesmus cells treated with herbicides DCMU and BNT and exposed to high irradiance. – Photosynthetica 35: 477-480, 1998. https://ps.ueb.cas.cz/artkey/phs-199803-0025_photosystem-2-photoinactivation-and-repair-in-the-scenedesmus-cells-treated-with-herbicides-dcmu-and-bnt-and-ex.php
Levasseur W., Taidi B., Lacombe R. et al.: Impact of seconds to minutes photoperiods on Chlorella vulgaris growth rate and chlorophyll a and b content. – Algal Res. 36: 10-16, 2018. https://www.sciencedirect.com/science/article/pii/S221192641830465X?via%3Dihub
Li G., Campbell D.A.: Rising CO2 interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonana. – PLoS ONE 8: e55562, 2013. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055562 PubMed PMC
Miyata K., Noguchi K., Terashima I.: Cost and benefit of the repair of photodamaged photosystem II in spinach leaves: roles of acclimation to growth light. – Photosynth. Res. 113: 165-180, 2012. https://link.springer.com/article/10.1007%2Fs11120-012-9767-0 PubMed
Murata N., Nishiyama Y.: ATP is a driving force in the repair of photosystem II during photoinhibition. – Plant Cell Environ. 41: 285-299, 2018. https://onlinelibrary.wiley.com/doi/full/10.1111/pce.13108 PubMed DOI
Murphy C.D., Roodvoets M.S., Austen E.J. et al.: Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. – PLoS ONE 12: e0168991, 2017. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168991 PubMed PMC
Nath K., Jajoo A., Poudyal R.S. et al.: Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. – FEBS Lett. 587: 3372-3381, 2013. https://febs.onlinelibrary.wiley.com/doi/full/10.1016/j.febslet.2013.09.015 PubMed DOI
Neale P.J., Melis A.: Algal photosynthetic membrane complexes and the photosynthesis-irradiance curve: a comparison of light-adaptation responses in Chlamydomonas reinhardtii (Chlorophyta). – J. Phycol. 22: 531-538, 1986. https://onlinelibrary.wiley.com/doi/10.1111/j.1529-8817.1986.tb02497.x DOI
Pätsikkä E., Kairavuo M., Šeršen F. et al.: Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. – Plant Physiol. 129: 1359-1367, 2002. https://academic.oup.com/plphys/article/129/3/1359/6110498 PubMed PMC
Raven J.A.: The cost of photoinhibition. – Physiol. Plantarum 142: 87-104, 2011. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2011.01465.x PubMed DOI
Rippka R., Deruelles J., Waterbury J.B. et al.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. – Microbiology 111: 1-61, 1979. https://www.microbiologyresearch.org/content/journal/micro/10.1099/00221287-111-1-1 DOI
Schreiber U., Klughammer C., Kolbowski J.: Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. – Photosynth. Res. 113: 127-144, 2012. https://link.springer.com/article/10.1007/s11120-012-9758-1 PubMed DOI PMC
Serôdio J., Campbell D.A.: Photoinhibition in optically thick samples: effects of light attenuation on chlorophyll fluorescence-based parameters. – J. Theor. Biol. 513: 110580, 2021. https://www.sciencedirect.com/science/article/pii/S0022519321000023?via%3Dihub PubMed
Sipka G., Magyar M., Mezzetti A. et al.: Light-adapted charge-separated state of photosystem II: Structural and functional dynamics of the closed reaction center. – Plant Cell 33: 1286-1302, 2021. https://academic.oup.com/plcell/article/33/4/1286/6119330 PubMed PMC
Stensjö K., Vavitsas K., Tyystjärvi T.: Harnessing transcription for bioproduction in cyanobacteria. – Physiol. Plantarum 162: 148-155, 2018. https://onlinelibrary.wiley.com/doi/10.1111/ppl.12606 PubMed DOI
Su Y., Song K., Zhang P. et al.: Progress in microalgae biofuel's commercialization. – Renew. Sust. Energ. Rev. 74: 402-411, 2017. https://www.sciencedirect.com/science/article/pii/S1364032116311352
Treves H., Raanan H., Kedem I. et al.: The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. – New Phytol. 210: 1229-1243, 2016. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.13870 PubMed DOI
Tyystjärvi E.: Photoinhibition of photosystem II. – In: Jeon K.W. (ed.): International Review of Cell and Molecular Biology. Vol. 300. Pp. 243-303. Elsevier, Amsterdam: 2013. https://www.sciencedirect.com/science/article/pii/B9780124052109000072?via%3Dihub PubMed
Valev D., Silva Santos H., Tyystjärvi E.: Stable wastewater treatment with Neochloris oleoabundans in a tubular photobioreactor. – J. Appl. Phycol. 32: 399-410, 2020. https://link.springer.com/article/10.1007/s10811-019-01890-x DOI
Virtanen O., Khorobrykh S., Tyystjärvi E.: Acclimation of Chlamydomonas reinhardtii to extremely strong light. – Photosynth. Res. 147: 91-106, 2021. https://link.springer.com/article/10.1007/s11120-020-00802-2 PubMed DOI PMC
Virtanen O., Valev D., Kruse O. et al.: Photoinhibition and continuous growth of the wild-type and a high-light tolerant strain of Chlamydomonas reinhardtii. – Photosynthetica 57: 617-626, 2019. https://ps.ueb.cas.cz/artkey/phs-201902-0035_photoinhibition-and-continuous-growth-of-the-wild-type-and-a-high-light-tolerant-strain-of-chlamydomonas-reinha.php