Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
U54 NS108874
NINDS NIH HHS - United States
K02 NS112600
NINDS NIH HHS - United States
P50 HD105351
NICHD NIH HHS - United States
K08 NS097633
NINDS NIH HHS - United States
U01 HG009088
NHGRI NIH HHS - United States
UM1 HG008895
NHGRI NIH HHS - United States
UL1 TR001878
NCATS NIH HHS - United States
U54 HD086984
NICHD NIH HHS - United States
K23 NS107646
NINDS NIH HHS - United States
PubMed
34431999
PubMed Central
PMC10147326
DOI
10.1093/brain/awab321
PII: 6357698
Knihovny.cz E-zdroje
- Klíčová slova
- SCN8A, epilepsy, genetics, personalized medicine,
- MeSH
- blokátory sodíkových kanálů terapeutické užití MeSH
- epilepsie generalizovaná * farmakoterapie genetika MeSH
- epileptické syndromy * farmakoterapie genetika MeSH
- genetické asociační studie MeSH
- kojenec MeSH
- lidé MeSH
- mentální retardace * genetika MeSH
- mutace MeSH
- napěťově řízený sodíkový kanál, typ 6 * genetika MeSH
- prognóza MeSH
- záchvaty farmakoterapie genetika MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- blokátory sodíkových kanálů MeSH
- napěťově řízený sodíkový kanál, typ 6 * MeSH
- SCN8A protein, human MeSH Prohlížeč
We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1-3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1-3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.
'L Sacco' Department of Biomedical and Clinical Sciences University of Milan 20157 Milan Italy
1 M Sechenov 1st Moscow State Medical University 100000 Moscow Russia
Analytic and Translational Genetics Unit Massachusetts General Hospital Boston MA 02108 USA
Center for Pediatric Neurology Cleveland Clinic Cleveland OH 44102 USA
Child Neurology and Clinical Neurophysiology Unit Padova University Hospital 35100 Padova Italy
Child Neurology and Psychiatry Unit Children's Hospital G Salesi 60121 Ancona Italy
Child Neurology Center for Pediatric and Teenage Health Care 53757 Sankt Augustin Germany
Child Neuropsychiatric Unit Civilian Hospital 25100 Brescia Italy
Children's Department Swiss Epilepsy Centre Clinic Lengg 8001 Zurich Switzerland
Clinique de Génétique Guy Fontaine CHU Lille 59000 Lille France
Cologne Center for Genomics University of Cologne 50667 Cologne Germany
Comprehensive Epilepsy Center Ludwig Maximilian University of Munich 80331 Munich Germany
Département de Neuropédiatrie INSERM CHU Montpellier 34000 Montpellier France
Department of Child Neurology 5 Buzzi Children's Hospital 20125 Milan Italy
Department of Clinical Diagnostics Ambry Genetics Aliso Viejo CA 92637 USA
Department of Clinical Medicine University of Copenhagen 2200 Copenhagen Denmark
Department of Genetics Boston Children's Hospital Boston MA 02108 USA
Department of Medical Genetics Institute of Mother and Child 00 034 Warsaw Poland
Department of Neurology Aarhus University Hospital 8000 Aarhus Denmark
Department of Neurology Boston Children's Hospital and Harvard Medical School Boston MA 02108 USA
Department of Neuropediatrics Kiel University 24105 Kiel Germany
Department of Neuropediatrics Klinikum Weiden Kliniken Nordoberpfalz AG 92637 Weiden Germany
Department of Neuropediatrics Universitätsklinikum Schleswig Holstein Campus Kiel 24106 Kiel Germany
Department of Neuropediatrics University Hospital Bonn 53229 Bonn Germany
Department of Pediatric Neurology Hospital Italiano de Buenos Aires C1428 Buenos Aires Argentina
Department of Pediatrics Copenhagen University Hospital Rigshospitalet 2200 Copenhagen Denmark
Department of Pediatrics Division of Pediatric Neurology Gent University Hospital 9042 Gent Belgium
Department of Pediatrics Oestfold Hospital 1712 Graalum Norway
Department of Pediatrics St Jacques Hospital 25000 Besançon France
Department of Pediatrics University of Melbourne Royal Children's Hospital 3052 Parkville Australia
Department of Woman's and Child's Health Padova University Hospital 35100 Padova Italy
Division of Neurology Children's Hospital of Philadelphia Philadelphia PA 19104 USA
Epilepsy Center Kleinwachau 01454 Dresden Radeberg Germany
Epilepsy Center Neurological Institute Cleveland Clinic Cleveland OH 44102 USA
Epilepsy Genetics Program Boston Children's Hospital Boston MA 02108 USA
Finnish Institute for Molecular Medicine University of Helsinki 320 Helsinki Finland
Geisinger Autism and Developmental Medicine Institute Lewisburg PA 17837 USA
Genetics Department CHRU Strasbourg 67000 Strasbourg France
Genetics Department CHU Côte de Nacre 14118 Caen France
Genomed Ltd 100000 Moscow Russia
Genomic Medicine Institute Lerner Research Institute Cleveland Clinic Cleveland OH 44102 USA
Institute for Molecular and Behavioral Neuroscience University of Cologne 50667 Cologne Germany
Institute for Neurobiology University of Tuebingen 72072 Tuebingen Germany
Institute for Pathology and Genetics 6040 Gosselies Belgium
Institute for Regional Health Services University of Southern Denmark 5230 Odense Denmark
Institute of Clinical Molecular Biology Kiel University 24105 Kiel Germany
Institute of Human Genetics University Clinic Heinrich Heine University 40210 Düsseldorf Germany
Institute of Human Genetics University of Leipzig Hospitals and Clinics 4275 Leipzig Germany
IRCCS 'G Gaslini' Institute 16121 Genoa Italy
IRCCS Stella Maris 56121 Pisa Italy
Justin Neurosciences Center Cook Children's Medical Center Fort Worth TX 76101 USA
Luxembourg Centre for Systems Biomedicine University Luxembourg L 4243 Esch sur Alzette Luxembourg
McLaughlin Centre and Department of Molecular Genetics University of Toronto Toronto ON 66777 Canada
Murdoch Children's Research Institute 3052 Parkville Australia
National Centre for Rare Epilepsy Related Disorders Oslo University Hospital 0001 Oslo Norway
Neurology Department The Royal Children's Hospital Melbourne 3002 Melbourne Australia
Pediatric Neurology and Development Center Shamir Medical Center Be'er Ya'akov Israel
Pediatric Neurology Marie Curie Hospital CHU Charleroi 6032 Charleroi Belgium
Pediatric Neurology Unit Vittore Buzzi Hospital ASST Fatebenefratelli Sacco 20100 Milan Italy
Research Centre for Medical Genetics 115522 Moscow Russia
Research Institute 'Rehabilitation Transition Palliation' PMU Salzburg 5020 Salzburg Austria
Russian Medical Academy of Continuous Professional Education 100000 Moscow Russia
Sackler Faculty of Medicine Tel Aviv University 5296001 Tel Aviv Israel
Service de Génétique Centre Hospitalier Universitaire de Poitiers 86021 Poitiers France
Service de Génétique Médicale CHU Nantes 44093 Nantes France
Stanley Center for Psychiatric Research Broad Institute of Harvard and M 1 T Cambridge MA 02138 USA
Svt Luka's Institute of Child Neurology and Epilepsy 100000 Moscow Russia
The Epilepsy Neurogenetics Initiative Children's Hospital of Philadelphia Philadelphia PA 19104 USA
University of Copenhagen 2200 Copenhagen Denmark
Zobrazit více v PubMed
Veeramah KR, O'Brien JE, Meisler MH, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 2012;90(3):502–510. PubMed PMC
Anand G, Collett-White F, Orsini A, et al. Autosomal dominant SCN8A mutation with an unusually mild phenotype. Eur J Paediatr Neurol. 2016;20(5):761–765. PubMed
Gardella E, Becker F, Moller RS, et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol. 2016;79(3):428–436. PubMed
Han JY, Jang JH, Lee IG, Shin S, Park J. A novel inherited mutation of SCN8A in a Korean family with benign familial infantile epilepsy using diagnostic exome sequencing. Ann Clin Lab Sci. 2017;47:747–753. PubMed
Johannesen KM, Gardella E, Encinas AC, et al. The spectrum of intermediate SCN8A-related epilepsy. Epilepsia. 2019;60(5):830–844. PubMed
Estacion M, O'Brien JE, Conravey A, et al. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis. 2014;69:117–123. PubMed PMC
Ohba C, Kato M, Takahashi S, et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia. 2014;55(7):994–1000. PubMed
Vaher U, Noukas M, Nikopensius T, et al. De novo SCN8A mutation identified by whole-exome sequencing in a boy with neonatal epileptic encephalopathy, multiple congenital anomalies, and movement disorders. J Child Neurol. 2014;29(12):Np202–206. PubMed
Fung LW, Kwok SL, Tsui KW. SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability. Epilepsia. 2015;56(8):1319–1320. PubMed
Larsen J, Carvill GL, Gardella E, et al. ; EuroEPINOMICS RES Consortium CRP . The phenotypic spectrum of SCN8A encephalopathy. Neurology. 2015;84(5):480–489. PubMed PMC
de Kovel CG, Meisler MH, Brilstra EH, et al. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res. 2014;108(9):1511–1518. PubMed PMC
Rolvien T, Butscheidt S, Jeschke A, et al. Severe bone loss and multiple fractures in SCN8A-related epileptic encephalopathy. Bone. 2017;103:136–143. PubMed
Wang J, Gao H, Bao X, et al. SCN8A mutations in Chinese patients with early onset epileptic encephalopathy and benign infantile seizures. BMC Med Genet. 2017;18(1):104- PubMed PMC
Gardella E, Marini C, Trivisano M, et al. The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology. 2018;91(12):e1112–e1124. PubMed
Johannesen KM, Gardella E, Scheffer I, et al. Early mortality in SCN8A-related epilepsies. Epilepsy Res. 2018;143:79–81. PubMed
Trudeau MM, Dalton JC, Day JW, Ranum LP, Meisler MH. Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation. J Med Genet. 2006;43(6):527–530. PubMed PMC
Blanchard MG, Willemsen MH, Walker JB, et al. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J Med Genet. 2015;52(5):330–337. PubMed PMC
Wagnon JL, Barker BS, Ottolini M, et al. Loss-of-function variants of SCN8A in intellectual disability without seizures. Neurol Genet. 2017;3(4):e170- PubMed PMC
Liu Y, Schubert J, Sonnenberg L, et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain. 2019;142(2):376–390. PubMed
Bunton-Stasyshyn RKA, Wagnon JL, Wengert ER, et al. Prominent role of forebrain excitatory neurons in SCN8A encephalopathy. 2019;142(2). PubMed PMC
Wagnon JL, Mencacci NE, Barker BS, et al. Partial loss-of-function of sodium channel SCN8A in familial isolated myoclonus. Hum Mutat. 2018;39(7):965–969. PubMed PMC
Boerma RS, Braun KP, van de Broek MP, et al. Remarkable phenytoin sensitivity in 4 children with SCN8A-related Epilepsy: A molecular neuropharmacological approach. Neurotherapeutics. 2016;13(1):192–197. PubMed PMC
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: A matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36(10):928–930. PubMed PMC
Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–521. PubMed PMC
Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: Position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58(4):522–530. PubMed
Richards S, Aziz N, Bale S, et al. ; ACMG Laboratory Quality Assurance Committee . Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. PubMed PMC
Denis J, Villeneuve N, Cacciagli P, et al. Clinical study of 19 patients with SCN8A-related epilepsy: Two modes of onset regarding EEG and seizures. Epilepsia. 2019;60(5):845–856. PubMed
Epi25 . Ultra-rare genetic variation in the epilepsies: A whole-exome sequencing study of 17,606 individuals. Am J Hum Genet. 2019;105(2):267–282. PubMed PMC
Wagnon JL, Meisler MH. Recurrent and non-recurrent mutations of SCN8A in epileptic encephalopathy. Front Neurol. 2015;6:104. PubMed PMC
Pan Y, Cummins TR. Distinct functional alterations in SCN8A epilepsy mutant channels. J Physiol. 2020;598(2):381–401. PubMed PMC
Schreiber JM, Tochen L, Brown M, et al. A multi-disciplinary clinic for SCN8A-related epilepsy. Epilepsy Res. 2020;159:106261. PubMed
Epifanio R, Zanotta N, Giorda R, Bardoni A, Zucca C. Novel epilepsy phenotype associated to a known SCN8A mutation. Seizure. 2019;67:15–17. PubMed
Ranza E, Z'Graggen W, Lidgren M, et al. SCN8A heterozygous variants are associated with anoxic-epileptic seizures. Am J Med Genet Part A. 2020;182(5):1209–1216. PubMed
Wengert ER, Tronhjem CE, Wagnon JL et al. Biallelic inherited SCN8A variants, a rare cause of SCN8A-related developmental and epileptic encephalopathy. Epilepsia. 2019;60(11):2277–2285. PubMed PMC
Lauxmann S, Verbeek NE, Liu Y, et al. Relationship of electrophysiological dysfunction and clinical severity in SCN2A-related epilepsies. Hum Mutat. 2018;39(12):1942–1956. PubMed
Kohrman DC, Smith MR, Goldin AL, Harris J, Meisler MH. A missense mutation in the sodium channel Scn8a is responsible for cerebellar ataxia in the mouse mutant jolting. J Neurosci. 1996;16(19):5993–5999. PubMed PMC
Smith MR, Goldin AL. A mutation that causes ataxia shifts the voltage-dependence of the Scn8a sodium channel. Neuroreport. 1999;10(14):3027–3031. PubMed
Dick DJ, Boakes RJ, Harris JB. A cerebellar abnormality in the mouse with motor end-plate disease. Neuropathol Appl Neurobiol. 1985;11(2):141–147. PubMed
Harris JB, Boakes RJ, Court JA. Physiological and biochemical studies on the cerebellar cortex of the murine mutants "jolting" and "motor end-plate disease". J Neurol Sci. 1992;110(1-2):186–194. PubMed
Papale LA, Beyer B, Jones JM, et al. Heterozygous mutations of the voltage-gated sodium channel SCN8A are associated with spike-wave discharges and absence epilepsy in mice. Hum Mol Genet. 2009;18(9):1633–1641. PubMed PMC
Makinson CD, Tanaka BS, Sorokin JM, et al. Regulation of Thalamic and Cortical Network Synchrony by Scn8a. Neuron. 2017;93(5):1165–1179.e1166. PubMed PMC
Wolff M, Johannesen KM, Hedrich UBS, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain. 2017;140(5):1316–1336. PubMed
Liao Y, Deprez L, Maljevic S, et al. Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain. 2010;133(Pt 5):1403–1414. PubMed
Brunklaus A, Du J, Steckler F, et al. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia. 2020;61(3):387–399. PubMed
Schwarz N, Bast T, Gaily E, et al. Clinical and genetic spectrum of <em>SCN2A</em>-associated episodic ataxia. Eur J Paediatr Neurol. 2019. PubMed
Ogiwara I, Miyamoto H, Tatsukawa T, et al. Nav1.2 haplodeficiency in excitatory neurons causes absence-like seizures in mice. Commun Biol. 2018;1:96-. PubMed PMC
Vacher H, Mohapatra DP, Trimmer JS. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev. 2008;88(4):1407–1447. PubMed PMC
Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci. 2006;9(9):1142–1149. PubMed
Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: A circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci. 2007;27(22):5903–5914. PubMed PMC
Bayat A, Hjalgrim H, Moller RS. The incidence of SCN1A-related Dravet syndrome in Denmark is 1:22,000: A population-based study from 2004 to 2009. Epilepsia. 2015;56(4):e36–e39. PubMed
Werling DM, Brand H, An JY, et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet. 2018;50(5):727–736. PubMed PMC
Baker EM, Thompson CH, Hawkins NA, et al. The novel sodium channel modulator GS-458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy. Epilepsia. 2018;59(6):1166–1176. PubMed PMC
Lenk GM, Jafar-Nejad P, Hill SF, et al. Scn8a antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet syndrome. Ann Neurol. 2020;87(3):339–346. PubMed PMC
figshare
10.6084/m9.figshare.15141018