• This record comes from PubMed

Whole-genome duplication leads to significant but inconsistent changes in climatic niche

. 2025 Jun 17 ; 122 (24) : e2424785122. [epub] 20250612

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
22-29078 K Grantová Agentura České Republiky (GAČR)
ERC-StG 850852 EC | European Research Council (ERC)
RVO 67985939 Akademie Věd České Republiky (CAS)

Polyploidization (whole-genome duplication, WGD) is a widespread large-effect macromutation with far-reaching genomic, phenotypic, and evolutionary consequences. Yet, we do not know whether the consistent phenotypic changes that are associated with polyploidization translate into predictable changes in ecological preferences. Niche modeling studies in mixed-ploidy species provide an opportunity to compare recently originated polyploids with their lower-ploidy ancestors. However, the available isolated studies provide contrasting results and the diverse methodologies used limit generalization. Based on 25,857 georeferenced ploidy-verified occurrence data for 129 mixed-ploidy flowering plant species, we tested in a unified statistical framework whether WGD is associated with consistent changes in climatic niche and in past, current, and predicted future range size. We found that 74% of species exhibited significant niche shifts associated with ploidy transition. However, there was no consistent environmental parameter underlying ploidy differentiation across species, nor was there consistent support for polyploid range or niche expansion in a subset of 75 densely sampled species with sufficient data for modeling. Our results demonstrate that polyploidization is an important factor affecting niche evolution of a species, but the environmental parameters underlying the ploidy-related niche shifts vary from species to species, demonstrating limited predictability of the outcomes of WGD in ecological space.

See more in PubMed

Comai L., The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836–846 (2005). PubMed

Fox D. T., Soltis D. E., Soltis P. S., Ashman T.-L., Van de Peer Y., Polyploidy: A biological force from cells to ecosystems. Trends Cell Biol. 30, 688–694 (2020). PubMed PMC

Van de Peer Y., Mizrachi E., Marchal K., The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017). PubMed

Bomblies K., When everything changes at once: Finding a new normal after genome duplication. Proc. R. Soc. B, Biol. Sci. 287, 20202154 (2020). PubMed PMC

del Pozo J. C., Ramirez-Parra E., Whole genome duplications in plants: An overview from PubMed

Doyle J. J., Coate J. E., Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell. Int. J. Plant Sci. 180, 1–52 (2018).

Stebbins G. L., Chromosomal Evolution in Higher Plants (Edward Arnold Ltd., London, UK, 1971).

Clo J., Kolář F., Short- and long-term consequences of genome doubling: A meta-analysis. Am. J. Bot. 108, 2315–2322 (2021). PubMed

Madlung A., Polyploidy and its effect on evolutionary success: Old questions revisited with new tools. Heredity 110, 99–104 (2013). PubMed PMC

Robinson D. O., et al. , Ploidy and size at multiple scales in the PubMed PMC

Rice A., et al. , The chromosome counts database (CCDB)—A community resource of plant chromosome numbers. New Phytol. 206, 19–26 (2015). PubMed

Hagerup O., Studies on polyploid ecotypes in

Hagerup O., Über polyploidie in beziehung zu klima, ökologie und phylogenie. Hereditas 16, 19–40 (1932).

Tischler G., Die bedeutung der polyploidie für die verbreitung der angiospermen. Bot. Jahrb. 76, 1–35 (1935).

Rohweder H., Beiträge zur systematik und phylogenie des genus

Manton I., The problem of

Ehrendorfer F., Beiträge zur phylogenie der gattung

Ehrendorfer F., Die geographische und ökologische Entfaltung des europäisch-alpinen polyploidkomplexes

Ehrendorfer F., Cytotaxonomische beiträge zur genese der mitteleuropäischen flora und vegetation. Ber. Dtsch. Bot. Ges. 75, 137–152 (1962).

Stebbins G. L., Polyploid complexes in relation to ecology and the history of floras. Am. Nat. 76, 36–45 (1942).

Müntzing A., The evolutionary significance of autopolyploidy. Hereditas 21, 363–378 (1936).

Clausen J., Keck D. D., Hiesey W. M.,

Clausen J. C., Keck D. D., Hiesey W. M., Experimental Studies on The Nature of Species. II: Plant Evolution Through Amphiploidy and Autoploidy, with Examples from The Madiinae (Carnegie Institution of Washington, Washington, DC, 1945).

Lewis W. H., “Polyploidy in species populations” in Polyploidy: Biological Relevance, Lewis W. H., Ed. (Plenum Press, New York, NY, 1980), pp. 103–144.

Ramsey J., Ramsey T. S., Ecological studies of polyploidy in the 100 years following its discovery. Philos. Trans. R. Soc. B, Biol. Sci. 369, 20130352 (2014). PubMed PMC

Favarger C., “Cytogeography and biosystematics” in Plant Biosystematics, Grant W. F., Ed. (Academic Press, Toronto, ON, Canada, 1984), pp. 453–476.

Folk R. A., Siniscalchi C. M., Soltis D. E., Angiosperms at the edge: Extremity, diversity, and phylogeny. Plant Cell Environ. 43, 2871–2893 (2020). PubMed

Levin D. A., Polyploidy and novelty in flowering plants. Am. Nat. 122, 1–25 (1983).

Stebbins G. L., Variation and Evolution in Plants (Columbia University Press, New York, NY, 1950).

Thompson J. D., Lumaret R., The evolutionary dynamics of polyploid plants: Origins, establishment and persistence. Trends Ecol. Evol. 7, 302–307 (1992). PubMed

Maherali H., Walden A. E., Husband B. C., Genome duplication and the evolution of physiological responses to water stress. New Phytol. 184, 721–731 (2009). PubMed

Ramsey J., Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U.S.A. 108, 7096–7101 (2011). PubMed PMC

Van de Peer Y., Ashman T.-L., Soltis P. S., Soltis D. E., Polyploidy: An evolutionary and ecological force in stressful times. Plant Cell 33, 11–26 (2020). PubMed PMC

Warner D. A., Edwards G. E., Effects of polyploidy on photosynthesis. Photosynth. Res. 35, 135–147 (1993). PubMed

Li W.-L., Berlyn G. P., Ashton P. M. S., Polyploids and their structural and physiological characteristics relative to water deficit in

Garbutt K., Bazzaz F. A., Leaf demography, flower production and biomass of diploid and tetraploid populations of

Brochmann C., et al. , Polyploidy in arctic plants. Biol. J. Linn. Soc. 82, 521–536 (2004).

Grant V., Plant Speciation (Columbia University Press, New York, NY, 1981).

Rice A., et al. , The global biogeography of polyploid plants. Nat. Ecol. Evol. 3, 265–273 (2019). PubMed

Love A., Love D., The significance of differences in the distribution of diploids and polyploids. Hereditas 29, 145–163 (1943).

te Beest M., et al. , The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 109, 19–45 (2012). PubMed PMC

Mosquin T., Evidence for autopolyploidy in PubMed

Hardy O. J., Vanderhoeven S., Loose M. D., Meerts P., Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds ( PubMed

Lewis W. H., Terrell E. E., Chromosomal races in eastern North American species of

Sharma A. K., Dey D., A comprehensive cytotaxonomic study on the family Chenopodiaceae. J. Cytol. Genet. 2, 114–127 (1967).

Grünig S., Patsiou T., Parisod C., Ice age-driven range shifts of diploids and expanding autotetraploids of PubMed

Hämälä T., et al. , Impact of whole-genome duplications on structural variant evolution in PubMed PMC

Ehrendorfer F., “Polyploidy and distribution” in Polyploidy. Biological Relevance, Lewis W. H., Ed. (Plenum Press, New York, NY, 1980), pp. 45–60.

Hegarty M. J., Hiscock S. J., Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18, R435–R444 (2008). PubMed

Parisod C., Holderegger R., Brochmann C., Evolutionary consequences of autopolyploidy. New Phytol. 186, 5–17 (2010). PubMed

Afonso A., et al. , Ecological niches in the polyploid complex PubMed PMC

Gunn B. F., et al. , Evolution of lomandroideae: Multiple origins of polyploidy and biome occupancy in Australia. Mol. Phylogenet. Evol. 149, 106836 (2020). PubMed

Manzaneda A. J., et al. , Environmental aridity is associated with cytotype segregation and polyploidy occurrence in PubMed PMC

Thompson K. A., Husband B. C., Maherali H., Climatic niche differences between diploid and tetraploid cytotypes of PubMed

Karunarathne P., et al. , Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids. Ann. Bot. 121, 1183–1196 (2018). PubMed PMC

Kirchheimer B., et al. , Reconstructing geographical parthenogenesis: Effects of niche differentiation and reproductive mode on holocene range expansion of an alpine plant. Ecol. Lett. 21, 392–401 (2018). PubMed PMC

Kirchheimer B., et al. , A matter of scale: Apparent niche differentiation of diploid and tetraploid plants may depend on extent and grain of analysis. J. Biogeogr. 43, 716–726 (2016). PubMed PMC

Yang S.-J., et al. , Divergence in cold tolerance promotes niche differentiation between diploid and polyploid kiwifruits along an altitudinal gradient in Southwest China. Oikos 2024, e10181 (2024).

Arrigo N., et al. , Is hybridization driving the evolution of climatic niche in PubMed

Chung M. Y., et al. , Polyploidy in

Duchoslav M., et al. , Intricate distribution patterns of six cytotypes of PubMed PMC

Gaynor M. L., Marchant D. B., Soltis D. E., Soltis P. S., Climatic niche comparison among ploidal levels in the classic autopolyploid system, PubMed

Hanzl M., Kolář F., Nováková D., Suda J., Nonadaptive processes governing early stages of polyploid evolution: Insights from a primary contact zone of relict serpentine PubMed

Morgan E. J., et al. , Niche similarity in diploid-autotetraploid contact zones of PubMed

Sonnleitner M., et al. , Ecological differentiation of diploid and polyploid cytotypes of PubMed PMC

Muñoz-Pajares A. J., et al. , Niche differences may explain the geographic distribution of cytotypes in PubMed

Visger C. J., et al. , Niche divergence between diploid and autotetraploid PubMed

Glennon K. L., Ritchie M. E., Segraves K. A., Evidence for shared broad-scale climatic niches of diploid and polyploid plants. Ecol. Lett. 17, 574–582 (2014). PubMed

Fowler N. L., Levin D. A., Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. Am. Nat. 124, 703–711 (1984).

Rodriguez D. J., A model for the establishment of polyploidy in plants. Am. Nat. 147, 33–46 (1996).

Baniaga A. E., Marx H. E., Arrigo N., Barker M. S., Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol. Lett. 23, 68–78 (2020). PubMed

Chesson P., Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31, 343–366 (2000).

Chesson P., General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58, 211–237 (2000). PubMed

Čertner M., Sudová R., Weiser M., Suda J., Kolář F., Ploidy-altered phenotype interacts with local environment and may enhance polyploid establishment in PubMed

Keller S. R., Taylor D. R., History, chance and adaptation during biological invasion: Separating stochastic phenotypic evolution from response to selection. Ecol. Lett. 11, 852–866 (2008). PubMed

Li Z., et al. , Patterns and processes of diploidization in land plants. Annu. Rev. Plant Biol. 72, 387–410 (2021). PubMed

Wendel J. F., The wondrous cycles of polyploidy in plants. Am. J. Bot. 102, 1753–1756 (2015). PubMed

Moody M. E., Mueller L. D., Soltis D. E., Genetic variation and random drift in autotetraploid populations. Genetics 134, 649–657 (1993). PubMed PMC

Otto S. P., Whitton J., Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000). PubMed

Levin D. A., The Role of Chromosomal Change in Plant Evolution (Oxford University Press, Oxford, UK, 2002).

Martin S. L., Husband B. C., Influence of phylogeny and ploidy on species ranges of North American angiosperms. J. Ecol. 97, 913–922 (2009).

Petit C., Thompson J. D., Species diversity and ecological range in relation to ploidy level in the flora of the pyrenees. Evol. Ecol. 13, 45–65 (1999).

Vandel A., La parthénogenèse géographique. Contribution à l’étude biologique et cytologique de la parthénogenèse naturelle. Bull. Biol. Fr. Belg. 62, 164 (1928).

Meirmans P. G., Niche divergence contributes to geographical parthenogenesis in two dandelion taxa. J. Evol. Biol. 34, 1071–1086 (2021). PubMed PMC

Sochor M., et al. , Distinct geographic parthenogenesis in spite of niche conservatism and a single ploidy level: A case of PubMed

Pannell J. R., et al. , The scope of Baker’s law. New Phytol. 208, 656–667 (2015). PubMed

López-Jurado J., Mateos-Naranjo E., Balao F., Niche divergence and limits to expansion in the high polyploid PubMed

Padilla-García N., et al. , The importance of considering the evolutionary history of polyploids when assessing climatic niche evolution. J. Biogeogr. 50, 86–100 (2023).

Soltis D. E., et al. , Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? Taxon 56, 13–30 (2007).

Paule J., et al. , Chromosome numbers of the flora of germany—A new online database of georeferenced chromosome counts and flow cytometric ploidy estimates. Plant Syst. Evol. 303, 1123–1129 (2017).

Kolář F., Čertner M., Suda J., Schönswetter P., Husband B. C., Mixed-ploidy species: Progress and opportunities in polyploid research. Trends Plant Sci. 22, 1041–1055 (2017). PubMed

Di Cola V., et al. , Ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).

Phillips S. J., Anderson R. P., Schapire R. E., Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A., Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

Oksanen J., et al., vegan: Community ecology package (R project Version 2.6-10, 2025). https://CRAN.R-project.org/package=vegan. Accessed 27 May 2025.

Broennimann O., et al. , Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

Naimi B., Araújo M. B., SDM: A reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).

Liu C., White M., Newell G., Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...