Impact of whole-genome duplications on structural variant evolution in Cochlearia

. 2024 Jun 25 ; 15 (1) : 5377. [epub] 20240625

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38918389

Grantová podpora
679056 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Excellent Science (H2020 Priority Excellent Science)
850852 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Excellent Science (H2020 Priority Excellent Science)
RPG-2020-367 Leverhulme Trust

Odkazy

PubMed 38918389
PubMed Central PMC11199601
DOI 10.1038/s41467-024-49679-y
PII: 10.1038/s41467-024-49679-y
Knihovny.cz E-zdroje

Polyploidy, the result of whole-genome duplication (WGD), is a major driver of eukaryote evolution. Yet WGDs are hugely disruptive mutations, and we still lack a clear understanding of their fitness consequences. Here, we study whether WGDs result in greater diversity of genomic structural variants (SVs) and how they influence evolutionary dynamics in a plant genus, Cochlearia (Brassicaceae). By using long-read sequencing and a graph-based pangenome, we find both negative and positive interactions between WGDs and SVs. Masking of recessive mutations due to WGDs leads to a progressive accumulation of deleterious SVs across four ploidal levels (from diploids to octoploids), likely reducing the adaptive potential of polyploid populations. However, we also discover putative benefits arising from SV accumulation, as more ploidy-specific SVs harbor signals of local adaptation in polyploids than in diploids. Together, our results suggest that SVs play diverse and contrasting roles in the evolutionary trajectories of young polyploids.

Zobrazit více v PubMed

Yant L, Bomblies K. Genome management and mismanagement–cell-level opportunities and challenges of whole-genome duplication. Genes Dev. 2015;29:2405–2419. doi: 10.1101/gad.271072.115. PubMed DOI PMC

Bomblies K. Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis. Plant Reprod. 2023;36:107–124. doi: 10.1007/s00497-022-00448-1. PubMed DOI PMC

Comai L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 2005;6:836–846. doi: 10.1038/nrg1711. PubMed DOI

Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017;18:411–424. doi: 10.1038/nrg.2017.26. PubMed DOI

Wood TE, et al. The frequency of polyploid speciation in vascular plants. Proc. Natl Acad. Sci. 2009;106:13875–13879. doi: 10.1073/pnas.0811575106. PubMed DOI PMC

Salman-Minkov A, Sabath N, Mayrose I. Whole-genome duplication as a key factor in crop domestication. Nat. Plants. 2016;2:1–4. doi: 10.1038/nplants.2016.115. PubMed DOI

Haldane JBS. Theoretical genetics of autopolyploids. J. Genet. 1930;22:359–372. doi: 10.1007/BF02984197. DOI

Wright S. The distribution of gene frequencies in populations of polyploids. Proc. Natl Acad. Sci. 1938;24:372–377. doi: 10.1073/pnas.24.9.372. PubMed DOI PMC

Soltis DE, Soltis PS. Genetic consequences of autopolyploidy in Tolmiea (Saxifragaceae) Evolution. 1989;43:586–594. doi: 10.2307/2409061. PubMed DOI

Moody ME, Mueller LD, Soltis DE. Genetic variation and random drift in autotetraploid populations. Genetics. 1993;134:649–657. doi: 10.1093/genetics/134.2.649. PubMed DOI PMC

Caballero A. Developments in the prediction of effective population size. Heredity. 1994;73:657–679. doi: 10.1038/hdy.1994.174. PubMed DOI

Otto SP, Gerstein AC. The evolution of haploidy and diploidy. Curr. Biol. 2008;18:R1121–R1124. doi: 10.1016/j.cub.2008.09.039. PubMed DOI

Haldane, J. B. S. The Causes of Evolution. (Longmans, Green and Co, New York, 1932).

Otto SP, Whitton J. Polyploid incidence and evolution. Annu. Rev. Genet. 2000;34:401–437. doi: 10.1146/annurev.genet.34.1.401. PubMed DOI

Otto SP. The evolutionary consequences of polyploidy. Cell. 2007;131:452–462. doi: 10.1016/j.cell.2007.10.022. PubMed DOI

Hill RR. Selection in autotetraploids. Theor. Appl. Genet. 1970;41:181–186. doi: 10.1007/BF00277621. PubMed DOI

Ronfort J. The mutation load under tetrasomic inheritance and its consequences for the evolution of the selfing rate in autotetraploid species. Genet. Res. 1999;74:31–42. doi: 10.1017/S0016672399003845. DOI

Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The ‘Polyploid Hop’: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front. Ecol. Evol. 2018;6:1–19. doi: 10.3389/fevo.2018.00117. DOI

Selmecki AM, et al. Polyploidy can drive rapid adaptation in yeast. Nature. 2015;519:349–351. doi: 10.1038/nature14187. PubMed DOI PMC

Fisher KJ, Buskirk SW, Vignogna RC, Marad DA, Lang GI. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae. PLOS Genet. 2018;14:e1007396. doi: 10.1371/journal.pgen.1007396. PubMed DOI PMC

Monnahan P, et al. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat. Ecol. Evol. 2019;3:457–468. doi: 10.1038/s41559-019-0807-4. PubMed DOI

Baduel P, Quadrana L, Hunter B, Bomblies K, Colot V. Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nat. Commun. 2019;10:1–10. doi: 10.1038/s41467-019-13730-0. PubMed DOI PMC

Liu Y, et al. Pan-genome of wild and cultivated soybeans. Cell. 2020;182:162–176. doi: 10.1016/j.cell.2020.05.023. PubMed DOI

Qin P, et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell. 2021;184:3542–3558.e16. doi: 10.1016/j.cell.2021.04.046. PubMed DOI

Hufford MB, et al. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science. 2021;373:655–662. doi: 10.1126/science.abg5289. PubMed DOI PMC

Liao W-W, et al. A draft human pangenome reference. Nature. 2023;617:312–324. doi: 10.1038/s41586-023-05896-x. PubMed DOI PMC

Zhou Y, et al. The population genetics of structural variants in grapevine domestication. Nat. Plants. 2019;5:965–979. doi: 10.1038/s41477-019-0507-8. PubMed DOI

Hämälä T, et al. Genomic structural variants constrain and facilitate adaptation in natural populations of Theobroma cacao, the chocolate tree. Proc. Natl Acad. Sci. 2021;118:e2102914118. doi: 10.1073/pnas.2102914118. PubMed DOI PMC

Sutton T, et al. Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science. 2007;318:1446–1449. doi: 10.1126/science.1146853. PubMed DOI

Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 2011;43:1160–1163. doi: 10.1038/ng.942. PubMed DOI PMC

Küpper C, et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 2015;48:79–83. doi: 10.1038/ng.3443. PubMed DOI PMC

Hof AEvan’t, et al. The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016;534:102–105. doi: 10.1038/nature17951. PubMed DOI

Todesco M, et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature. 2020;584:602–607. doi: 10.1038/s41586-020-2467-6. PubMed DOI

Hu H, et al. Amborella gene presence/absence variation is associated with abiotic stress responses that may contribute to environmental adaptation. N. Phytol. 2022;233:1548–1555. doi: 10.1111/nph.17658. PubMed DOI PMC

Walkowiak S, et al. Multiple wheat genomes reveal global variation in modern breeding. Nature. 2020;588:277–283. doi: 10.1038/s41586-020-2961-x. PubMed DOI PMC

He Z, et al. Genome structural evolution in Brassica crops. Nat. Plants. 2021;7:757–765. doi: 10.1038/s41477-021-00928-8. PubMed DOI

Lovell JT, et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature. 2021;590:438–444. doi: 10.1038/s41586-020-03127-1. PubMed DOI PMC

Bray, S. M. et al. Kinetochore and ionomic adaptation to whole genome duplication. Preprint at 10.1101/2020.03.31.017939 (2023).

Bohutínská M, et al. Novelty and convergence in adaptation to whole genome duplication. Mol. Biol. Evol. 2021;38:3910–3924. doi: 10.1093/molbev/msab096. PubMed DOI PMC

Koch MA. Mid-Miocene divergence of Ionopsidium and Cochlearia and its impact on the systematics and biogeography of the tribe Cochlearieae (Brassicaceae) TAXON. 2012;61:76–92. doi: 10.1002/tax.611006. DOI

Wolf E, Gaquerel E, Scharmann M, Yant L, Koch MA. Evolutionary footprints of a cold relic in a rapidly warming world. eLife. 2021;10:e71572. doi: 10.7554/eLife.71572. PubMed DOI PMC

Koch M, Hurka H, Mummenhoff K. Chloroplast DNA restriction site variation and RAPD-analyses in Cochlearia (Brassicaceae): Biosystematics and speciation. Nord. J. Bot. 1996;16:585–603. doi: 10.1111/j.1756-1051.1996.tb00276.x. DOI

Koch M, Huthmann M, Hurka H. Isozymes, speciation and evolution in the polyploid complex Cochlearia L. (Brassicaceae) Bot. Acta. 1998;111:411–425. doi: 10.1111/j.1438-8677.1998.tb00727.x. DOI

Brandrud MK, Paun O, Lorenzo MT, Nordal I, Brysting AK. RADseq provides evidence for parallel ecotypic divergence in the autotetraploid Cochlearia officinalis in Northern Norway. Sci. Rep. 2017;7:5573. doi: 10.1038/s41598-017-05794-z. PubMed DOI PMC

Eisenschmid K, Jabbusch S, Koch MA. Evolutionary footprints of cold adaptation in arctic-alpine Cochlearia (Brassicaceae) – Evidence from freezing experiments and electrolyte leakage. Perspect. Plant Ecol. Evol. Syst. 2023;59:125728. doi: 10.1016/j.ppees.2023.125728. DOI

Smolka, M. et al. Detection of mosaic and population-level structural variants with sniffles2. Nat. Biotechnol. 1–10 10.1038/s41587-023-02024-y (2024). PubMed PMC

Besnard J, et al. Arabidopsis UMAMIT24 and 25 are amino acid exporters involved in seed loading. J. Exp. Bot. 2018;69:5221–5232. doi: 10.1093/jxb/ery302. PubMed DOI PMC

Punzo P, et al. DRT111/SFPS splicing factor controls abscisic acid sensitivity during seed development and germination. Plant Physiol. 2020;183:793–807. doi: 10.1104/pp.20.00037. PubMed DOI PMC

Qin Y, et al. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLOS Genet. 2009;5:e1000621. doi: 10.1371/journal.pgen.1000621. PubMed DOI PMC

Kawasaki T, et al. A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant J. 2005;44:258–270. doi: 10.1111/j.1365-313X.2005.02525.x. PubMed DOI

Weis C, Hückelhoven R, Eichmann R. LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi. J. Exp. Bot. 2013;64:3855–3867. doi: 10.1093/jxb/ert217. PubMed DOI PMC

Withers JC, et al. GRAVITY PERSISTENT SIGNAL 1 (GPS1) reveals novel cytochrome P450s involved in gravitropism. Am. J. Bot. 2013;100:183–193. doi: 10.3732/ajb.1200436. PubMed DOI

Ride JP, Davies EM, Franklin FCH, Marshall DF. Analysis of Arabidopsis genome sequence reveals a large new gene family in plants. Plant Mol. Biol. 1999;39:927–932. doi: 10.1023/A:1006178511787. PubMed DOI

Biel A, Moser M, Meier I. A Role for plant KASH proteins in regulating stomatal dynamics. Plant Physiol. 2020;182:1100–1113. doi: 10.1104/pp.19.01010. PubMed DOI PMC

Feng Y, et al. Arabidopsis SCP1-like small phosphatases differentially dephosphorylate RNA polymerase II C-terminal domain. Biochem. Biophys. Res. Commun. 2010;397:355–360. doi: 10.1016/j.bbrc.2010.05.130. PubMed DOI

Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 2015;18:1–16. doi: 10.1111/ele.12376. PubMed DOI

Rellstab C, Dauphin B, Exposito-Alonso M. Prospects and limitations of genomic offset in conservation management. Evol. Appl. 2021;14:1202–1212. doi: 10.1111/eva.13205. PubMed DOI PMC

Mahmoud M, et al. Structural variant calling: the long and the short of it. Genome Biol. 2019;20:1–14. doi: 10.1186/s13059-019-1828-7. PubMed DOI PMC

Agrawal AF, Whitlock MC. Inferences about the distribution of dominance drawn from yeast gene knockout data. Genetics. 2011;187:553–566. doi: 10.1534/genetics.110.124560. PubMed DOI PMC

Conover JL, Wendel JF. Deleterious mutations accumulate faster in allopolyploid than diploid cotton (Gossypium) and unequally between subgenomes. Mol. Biol. Evol. 2022;39:msac024. doi: 10.1093/molbev/msac024. PubMed DOI PMC

Morgan EJ, et al. Disentangling the components of triploid block and its fitness consequences in natural diploid–tetraploid contact zones of Arabidopsis arenosa. N. Phytol. 2021;232:1449–1462. doi: 10.1111/nph.17357. PubMed DOI

Bohutínská, M. et al. Mosaic haplotypes underlie repeated adaptation to whole genome duplication in Arabidopsis lyrata and Arabidopsis arenosa. Preprint at 10.1101/2023.01.11.523565 (2023).

Capblancq T, Forester BR. Redundancy analysis: a Swiss army knife for landscape genomics. Methods Ecol. Evol. 2021;12:2298–2309. doi: 10.1111/2041-210X.13722. DOI

Orr A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution. 1998;52:935–949. doi: 10.2307/2411226. PubMed DOI

Hämälä T, Gorton AJ, Moeller DA, Tiffin P. Pleiotropy facilitates local adaptation to distant optima in common ragweed (Ambrosia artemisiifolia) PLOS Genet. 2020;16:e1008707. doi: 10.1371/journal.pgen.1008707. PubMed DOI PMC

Wos G, Choudhury RR, Kolář F, Parisod C. Transcriptional activity of transposable elements along an elevational gradient in Arabidopsis arenosa. Mob. DNA. 2021;12:1–12. doi: 10.1186/s13100-021-00236-0. PubMed DOI PMC

Hämälä T, Weixuan N, Kuittinen H, Aryamanesh N, Savolainen O. Environmental response in gene expression and DNA methylation reveals factors influencing the adaptive potential of Arabidopsis lyrata. eLife. 2022;11:e83115. doi: 10.7554/eLife.83115. PubMed DOI PMC

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods. 2021;18:170–175. doi: 10.1038/s41592-020-01056-5. PubMed DOI PMC

Guan D, et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36:2896–2898. doi: 10.1093/bioinformatics/btaa025. PubMed DOI PMC

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Ou S, et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 2019;20:275. doi: 10.1186/s13059-019-1905-y. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Vasimuddin, Md., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314–324 10.1109/IPDPS.2019.00041 (2019).

Van der Auwera, G. A. & O’Connor, D. B. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. (O’Reilly Media, 2020).

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:2074–2093. doi: 10.1371/journal.pgen.0020190. PubMed DOI PMC

Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992;132:583–589. doi: 10.1093/genetics/132.2.583. PubMed DOI PMC

Bhatia G, Patterson N, Sankararaman S, Price AL. Estimating and interpreting FST The impact of rare variants. Genome Res. 2013;23:1514–1521. doi: 10.1101/gr.154831.113. PubMed DOI PMC

Oksanen, J. et al. vegan: community ecology package. R Package Version 26-4 10.32614/CRAN.package.vegan (2022).

Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC

De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–2669. doi: 10.1093/bioinformatics/bty149. PubMed DOI PMC

Jeffares DC, et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 2017;8:1–11. doi: 10.1038/ncomms14061. PubMed DOI PMC

Ono Y, Asai K, Hamada M. PBSIM2: a simulator for long-read sequencers with a novel generative model of quality scores. Bioinformatics. 2021;37:589–595. doi: 10.1093/bioinformatics/btaa835. PubMed DOI PMC

Gerard D, Luis Felipe Ventorim Ferrão, Garcia AAF, Stephens M. Genotyping polyploids from messy sequencing data. Genetics. 2018;210:789–807. doi: 10.1534/genetics.118.301468. PubMed DOI PMC

Stoiber, M. et al. De novo Identification of DNA modifications enabled by genome-guided nanopore signal processing. Preprint at 10.1101/094672 (2017).

Ni P, et al. Genome-wide detection of cytosine methylations in plant from nanopore data using deep learning. Nat. Commun. 2021;12:5976. doi: 10.1038/s41467-021-26278-9. PubMed DOI PMC

Storey JD. A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B. 2002;64:479–498. doi: 10.1111/1467-9868.00346. DOI

Han, S. et al. Local assembly of long reads enables phylogenomics of transposable elements in a polyploid cell line. Nucleic Acids Res. 10.1093/nar/gkac794 (2022). PubMed PMC

Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods. 2020;17:155–158. doi: 10.1038/s41592-019-0669-3. PubMed DOI PMC

Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics. 2018;34:2490–2492. doi: 10.1093/bioinformatics/bty121. PubMed DOI PMC

Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 1981;17:368–376. doi: 10.1007/BF01734359. PubMed DOI

Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–593. doi: 10.1093/bioinformatics/btq706. PubMed DOI PMC

Weng ML, et al. Fine-grained analysis of spontaneous mutation spectrum and frequency in Arabidopsis thaliana. Genetics. 2019;211:703–714. doi: 10.1534/genetics.118.301721. PubMed DOI PMC

Davydov EV, et al. Identifying a high fraction of the human genome to be under selective constraint using GERP. PLOS Comput. Biol. 2010;6:e1001025. doi: 10.1371/journal.pcbi.1001025. PubMed DOI PMC

Hohmann N, Wolf EM, Lysak MA, Koch MA. A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell. 2015;27:2770–2784. PubMed PMC

Garrison E, et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 2018;36:875–879. doi: 10.1038/nbt.4227. PubMed DOI PMC

Hickey G, et al. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol. 2020;21:35. doi: 10.1186/s13059-020-1941-7. PubMed DOI PMC

Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC

Holtgrewe, M. Mason – A read simulator for second generation sequencing data. (Freie Universität Berlin, Germany, 2010).

Gautier M. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics. 2015;201:1555–1579. doi: 10.1534/genetics.115.181453. PubMed DOI PMC

DeGiorgio M, Huber CD, Hubisz MJ, Hellmann I, Nielsen R. SweepFinder2: increased sensitivity, robustness and flexibility. Bioinformatics. 2016;32:1895–1897. doi: 10.1093/bioinformatics/btw051. PubMed DOI

Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for Gene Ontology. R Package Version252010.18129/B9.bioc.topGO (2023).

GBIF.org. GBIF occurrence download. 10.15468/dl.z297uw (2023).

Zizka A, et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 2019;10:744–751. doi: 10.1111/2041-210X.13152. DOI

Yukimoto, S. et al. MRI MRI-ESM2.0 model output prepared for CMIP6 AerChemMIP. Earth System Grid Federation10.22033/ESGF/CMIP6.633 (2019).

Hämälä, T. Impact of whole-genome duplications on structural variant evolution in Cochlearia. GitHub10.5281/zenodo.11473503 (2024). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...