Whole-genome duplication increases genetic diversity and load in outcrossing Arabidopsis arenosa
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
22-29078 K
Grantová Agentura České Republiky (GAČR)
PubMed
40737318
PubMed Central
PMC12337351
DOI
10.1073/pnas.2501739122
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, evolution, genetic load, genomics, natural selection,
- MeSH
- akumulace mutací * MeSH
- Arabidopsis * genetika MeSH
- duplikace genu MeSH
- genetická zátěž * MeSH
- genom rostlinný * MeSH
- jednonukleotidový polymorfismus MeSH
- molekulární evoluce MeSH
- mutace INDEL MeSH
- selekce (genetika) MeSH
- strukturální variace genomu MeSH
- tetraploidie * MeSH
- Publikační typ
- časopisecké články MeSH
Genetic variation underpins evolutionary change, but mutation accumulation increases genetic load. Various factors affect the extent of load, such as population size and breeding system, but other important determinants remain unexplored. In particular, whole-genome duplication (WGD)-a pervasive macromutation occurring broadly across Eukaryotes-remains poorly understood in terms of its impact on neutral and selective processes within populations. Using iterative forward simulations and empirical analysis of 632 short- and 16 long-read sequenced individuals of Arabidopsis arenosa (in 23 diploid and 42 natural autotetraploid populations), we measure the effects of WGD on genome-wide diversity and mutation load. Our simulations show how genetic variation gradually rises in autotetraploids due to increased mutational target size. Moreover, mutation load increases due to relaxed purifying selection as ploidies rise, when deleterious mutations are masked by additional chromosome copies. Empirical data confirm these patterns, showing significant increases in nucleotide diversity, ratios of nonsynonymous to synonymous SNPs, and numbers of indels and large structural variants in A. arenosa autotetraploids. However, a rather modest increase in load proxies together with a broad distribution and niche of autotetraploids suggests load accumulation has not yet limited their successful expansion. Overall, we demonstrate a complex interplay between neutral processes and purifying selection in shaping genetic variation following WGD and highlight ploidy as an important determinant of mutation load, genetic diversity, and therefore adaptive potential in natural populations.
Department of Botany Faculty of Science Charles University Prague 12800 Czech Republic
Institute of Botany Czech Academy of Sciences Průhonice 25243 Czech Republic
Production Systems Natural Resources Institute Finland Jokioinen 31600 Finland
School of Life Sciences University of Nottingham Nottingham NG7 2RD United Kingdom
Zobrazit více v PubMed
Ohta T., Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973). PubMed
Eyre-Walker A., Keightley P. D., The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007). PubMed
Haldane J. B. S., The effect of variation on fitness. Am. Nat. 71, 337–349 (1937).
Muller H. J., Our load of mutations. Am. J. Hum. Genet. 2, 111–176 (1950). PubMed PMC
Agrawal A. F., Whitlock M. C., Mutation load: The fitness of individuals in populations where deleterious alleles are abundant. Annu. Rev. Ecol. Evol. Syst. 43, 115–135 (2012).
Bertorelle G., et al. , Genetic load: Genomic estimates and applications in non-model animals. Nat. Rev. Genet. 23, 492–503 (2022). PubMed
Pouyet F., Gilbert K. J., Towards an improved understanding of molecular evolution: The relative roles of selection, drift, and everything in between. Peer Community J. 1, e27 (2021).
Rose C. W., et al. , Genetic load and transgenic mitigating genes in transgenic PubMed PMC
van Oosterhout C., Mutation load is the spectre of species conservation. Nat. Ecol. Evol. 4, 1004–1006 (2020). PubMed
Dussex N., Morales H. E., Grossen C., Dalén L., van Oosterhout C., Purging and accumulation of genetic load in conservation. Trends Ecol. Evol. 38, 961–969 (2023). PubMed
Mathur S., Tomeček J., Tarango-Arámbula L., Perez R., DeWoody A., An evolutionary perspective on contemporary genetic load in threatened species to inform future conservation efforts. Evolution 3, 690–704 (2021).
Benton M. L., et al. , The influence of evolutionary history on human health and disease. Nat. Rev. Genet. 22, 269–283 (2021). PubMed PMC
Oosterhout C., Marcu D., Immler S., Accounting for the genetic load in assisted reproductive technology. Clin. Transl. Med. 12, e864 (2022). PubMed PMC
Barrett S. C., Charlesworth D., Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522–524 (1991). PubMed
Slotte T., Foxe J. P., Hazzouri K. M., Wright S. I., Genome-wide evidence for efficient positive and purifying selection in PubMed
Willi Y., Fracassetti M., Zoller S., Van Buskirk J., Accumulation of mutational load at the edges of a species range. Mol. Biol. Evol. 35, 781–791 (2018). PubMed
Zeitler L., Parisod C., Gilbert K. J., Purging due to self-fertilization does not prevent accumulation of expansion load. PLoS Genet. 19, e1010883 (2023). PubMed PMC
Kleinman-Ruiz D., et al. , Purging of deleterious burden in the endangered Iberian lynx. Proc. Natl. Acad. Sci. U.S.A. 119, e2110614119 (2022). PubMed PMC
Laenen B., et al. , Demography and mating system shape the genome-wide impact of purifying selection in PubMed PMC
Sianta S. A., Peischl S., Moeller D. A., Brandvain Y., The efficacy of selection may increase or decrease with selfing depending upon the recombination environment. Evolution 77, 394–408 (2023). PubMed
Hussin J. G., et al. , Recombination affects accumulation of damaging and disease-associated mutations in human populations. Nat. Genet. 47, 400–404 (2015). PubMed
Zhang M., Zhou L., Bawa R., Suren H., Holliday J. A., Recombination rate variation, hitchhiking, and demographic history shape deleterious load in poplar. Mol. Biol. Evol. 33, 2899–2910 (2016). PubMed
Agrawal A. F., Genetic loads under fitness-dependent mutation rates. J. Evol. Biol. 15, 1004–1010 (2002).
Van de Peer Y., Mizrachi E., Marchal K., The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017). PubMed
Otto S. P., Whitton J., Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000). PubMed
Salman-Minkov A., Sabath N., Mayrose I., Whole-genome duplication as a key factor in crop domestication. Nat. Plants 2, 16115 (2016). PubMed
Bever F., Felber J., “The theoretical population genetics of autopolyploidy” in Oxford Surveys in Evolutionary Biology, Antonovics D., Futuyma J., Eds. (Oxford University Press, 1992), pp. 185–217.
Otto S. P., The evolutionary consequences of polyploidy. Cell 131, 452–462 (2007). PubMed
Ronfort J., Jenczewski E., Bataillon T., Rousset F., Analysis of population structure in autotetraploid species. Genetics 150, 921–930 (1998). PubMed PMC
Ronfort J., The mutation load under tetrasomic inheritance and its consequences for the evolution of the selfing rate in autotetraploid species. Genet. Res. (Camb.) 74, 31–42 (1999).
Wu J.-W., et al. , Analysis on genetic diversification and heterosis in autotetraploid rice. SpringerPlus 2, 439 (2013). PubMed PMC
Yu R.-M., et al. , Genomic insights into biased allele loss and increased gene numbers after genome duplication in autotetraploid PubMed PMC
Grünig S., Patsiou T., Parisod C., Ice age-driven range shifts of diploids and expanding autotetraploids of PubMed
Monnahan P., et al. , Pervasive population genomic consequences of genome duplication in PubMed
Rougemont Q., Leroy T., Rondeau E. B., Koop B., Bernatchez L., Allele surfing causes maladaptation in a Pacific salmon of conservation concern. PLoS Genet. 19, e1010918 (2023). PubMed PMC
Baduel P., Quadrana L., Hunter B., Bomblies K., Colot V., Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nat. Commun. 10, 5818 (2019). PubMed PMC
Hämälä T., et al. , Impact of whole-genome duplications on structural variant evolution in PubMed PMC
Simons Y. B., Sella G., The impact of recent population history on the deleterious mutation load in humans and close evolutionary relatives. Curr. Opin. Genet. Dev. 41, 150–158 (2016). PubMed PMC
Arnold B., Kim S.-T., Bomblies K., Single geographic origin of a widespread autotetraploid PubMed
Kolář F., et al. , Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the
Kolář F., et al. , Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model PubMed
Schmickl R., Paule J., Klein J., Marhold K., Koch M. A., The evolutionary history of the PubMed PMC
Kiefer C., Duarte P. R., Schmickl R., Koch M. A., The spatio-temporal diversification of SRK alleles in an
Padilla-García N., et al. , The importance of considering the evolutionary history of polyploids when assessing climatic niche evolution. J. Biogeogr. 50, 86–100 (2023).
Yant L., Bomblies K., Genomic studies of adaptive evolution in outcrossing PubMed
Kimura M., Ohta T., The average number of generations until fixation of a mutant gene in a finite population. Genetics 61, 763–771 (1969). PubMed PMC
Wakely J., Coalescent Theory: An Introduction (Roberts & Company, 2008).
Chen J., Bataillon T., Glémin S., Lascoux M., What does the distribution of fitness effects of new mutations reflect? New Phytol. 233, 1613–1619 (2022). PubMed
Tataru P., PolyDFEv2.0: Testing for invariance of the distribution of fitness effects within and across species. Bioinformatics 35, 2868–2869 (2019). PubMed
Bataillon T., Bailey S. F., Effects of new mutations on fitness: Insights from models and data: Effects of new mutations on fitness. Ann. N. Y. Acad. Sci. 1320, 76–92 (2014). PubMed PMC
Moutinho A. F., Bataillon T., Dutheil J. Y., Variation of the adaptive substitution rate between species and within genomes. Evol. Ecol. 34, 315–338 (2020).
Castellano D., Macià M. C., Tataru P., Bataillon T., Munch K., Comparison of the full distribution of fitness effects of new amino acid mutations across great apes. Genetics 213, 953–966 (2019). PubMed PMC
James J., et al. , Between but not within-species variation in the distribution of fitness effects. Mol. Biol. Evol. 40, msad228 (2023). PubMed PMC
Huber C. D., Durvasula A., Hancock A. M., Lohmueller K. E., Gene expression drives the evolution of dominance. Nat. Commun. 9, 2750 (2018). PubMed PMC
García-verdugo C., et al. , Genetic diversity and differentiation processes in the ploidy series of PubMed
Eliášová A., Trávníček P., Mandák B., Münzbergová Z., Autotetraploids of PubMed PMC
Knotek A., Kolář F., Different low-competition island habitats in Central Europe harbour similar levels of genetic diversity in relict populations of
Luttikhuizen P. C., Stift M., Kuperus P., Van Tienderen P. H., Genetic diversity in diploid vs. tetraploid PubMed
De Coster W., Weissensteiner M. H., Sedlazeck F. J., Towards population-scale long-read sequencing. Nat. Rev. Genet. 22, 572–587 (2021). PubMed PMC
Molina-Henao Y. F., Hopkins R., Autopolyploid lineage shows climatic niche expansion but not divergence in PubMed
Wos G., et al. , Parallel local adaptation to an alpine environment in
Van de Peer Y., Ashman T.-L., Soltis P. S., Soltis D. E., Polyploidy: An evolutionary and ecological force in stressful times. Plant Cell 33, 11–26 (2021). PubMed PMC
Konečná V., et al. , Parallel adaptation in autopolyploid PubMed PMC
Bohutínská M., et al. , Genomic basis of parallel adaptation varies with divergence in PubMed PMC
Baduel P., Hunter B., Yeola S., Bomblies K., Genetic basis and evolution of rapid cycling in railway populations of tetraploid PubMed PMC
Wendel J. F., The wondrous cycles of polyploidy in plants. Am. J. Bot. 102, 1753–1756 (2015). PubMed
Grossen C., Guillaume F., Keller L. F., Croll D., Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Commun. 11, 1001 (2020). PubMed PMC
Pekkala N., Emily Knott K., Kotiaho J. S., Puurtinen M., Inbreeding rate modifies the dynamics of genetic load in small populations. Ecol. Evol. 2, 1791–1804 (2012). PubMed PMC
Parisod C., Holderegger R., Brochmann C., Evolutionary consequences of autopolyploidy: Research review. New Phytol. 186, 5–17 (2010). PubMed
Bartolić P., Morgan E. J., Padilla-García N., Kolář F., Ploidy as a leaky reproductive barrier: Mechanisms, rates and evolutionary significance of interploidy gene flow. Ann. Bot. 134, 537–550 (2024). PubMed PMC
Yant L., et al. , Meiotic adaptation to genome duplication in PubMed PMC
Bomblies K., When everything changes at once: Finding a new normal after genome duplication. Proc. Biol. Sci. 287, 20202154 (2020). PubMed PMC
Bohutínská M., et al. , De novo mutation and rapid protein (co-)evolution during meiotic adaptation in PubMed PMC
Bohutínská M., et al. , Polyploids broadly generate novel haplotypes from trans-specific variation in PubMed PMC
Bray S. M., et al. , Kinetochore and ionomic adaptation to whole-genome duplication in PubMed
Novikova PYu., et al. , Genome sequencing reveals the origin of the allotetraploid PubMed PMC
Leal J. L., et al. , Complex polyploids: Origins, genomic composition, and role of introgressed alleles. Syst. Biol. 73, 392–418 (2024). PubMed PMC
Kryvokhyzha D., et al. , Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid PubMed PMC
Conover J. L., Wendel J. F., Deleterious mutations accumulate faster in allopolyploid than diploid cotton ( PubMed PMC
Paape T., et al. , Patterns of polymorphism and selection in the subgenomes of the allopolyploid PubMed PMC
Douglas G. M., et al. , Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid PubMed PMC
Haller B. C., Messer P. W., SLiM 4: Multispecies eco-evolutionary modeling. Am. Nat. 201, E127–E139 (2023). PubMed PMC
Booker W. W., Schrider D. R., The genetic consequences of range expansion and its influence on diploidization in polyploids. Am. Nat. 205, 203–223 (2025). PubMed
Clauss M. J., Koch M. A., Poorly known relatives of PubMed
Lysak M. A., Brassicales: An update on chromosomal evolution and ancient polyploidy. Plant Syst. Evol. 304, 757–762 (2018).
Kim Y., Wiehe T., Simulation of DNA sequence evolution under models of recent directional selection. Brief. Bioinf. 10, 84–96 (2009). PubMed PMC
Ferrari T., Feng S., Zhang X., Mooney J., Towards simulation optimization: An examination of the impact of scaling on coalescent and forward simulations. bioRxiv [Preprint] (2024). 10.1101/2024.04.27.591463 (Accessed 21 March 2025). DOI
Weng M.-L., et al. , Fine-grained analysis of spontaneous mutation spectrum and frequency in PubMed PMC
Takou M., et al. , Maintenance of adaptive dynamics and no detectable load in a range-edge outcrossing plant population. Mol. Biol. Evol. 38, 1820–1836 (2021). PubMed PMC
Dukić M., Bomblies K., Male and female recombination landscapes of diploid PubMed PMC
Simmons M. J., Crow J. F., Mutations affecting fitness in PubMed
Agrawal A. F., Whitlock M. C., Inferences about the distribution of dominance drawn from yeast gene knockout data. Genetics 187, 553–566 (2011). PubMed PMC
Layman N. C., Busch J. W., Bottlenecks and inbreeding depression in autotetraploids. Evolution 72, 2025–2037 (2018). PubMed
Bolger A. M., Lohse M., Usadel B., Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). PubMed PMC
Bramsiepe J., et al. , Structural evidence for MADS-box type I family expansion seen in new assemblies of PubMed
Li H., Durbin R., Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC
McKenna A., et al. , The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). PubMed PMC
Russo A., Potente G., Mayjonade B., HMW DNA extraction from diverseplants species for PacBio and Nanopore sequencing. Front. Plant Sci. 61, 203–205 (2022).
Li H., New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021). PubMed PMC
Smolka M., et al. , Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotech. 42, 1571–1580 (2024). PubMed PMC
Gerard D., Ferrão L. F. V., Garcia A. A. F., Stephens M., Genotyping polyploids from messy sequencing data. Genetics 210, 789–807 (2018). PubMed PMC
Jombart T., Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008). PubMed
Nei M., Genetic distance between populations. Am. Nat. 106, 283–292 (1972).
Pembleton L. W., Cogan N. O. I., Forster J. W., StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946–952 (2013). PubMed
Huson D. H., Bryant D., Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006). PubMed
Bohutínská M., Vlček J., Monnahan P., Kolář F., Population genomic analysis of diploid-autopolyploid species. Methods Mol. Biol. 2545, 297–324 (2023). PubMed
R Core Team, R: A Language and Environment for Statistical Computing (R Core Team, 2021).
Keightley P. D., Jackson B. C., Inferring the probability of the derived vs. the ancestral allelic state at a polymorphic site. Genetics 209, 897–906 (2018). PubMed PMC
Cingolani P., Variant annotation and functional prediction: SnpEff. Methods Mol. Biol. 2493, 289–314 (2022). PubMed
Vlček J., et al., Sequencing data newly generated for this study. NCBI BioProject. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA929698. Deposited 16 March 2023.
Novikova P. Y., et al., Sequencing data associated with Noviková et al. 2017. NCBI BioProject. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA284572. Accessed 16 November 2023.
Monnahan P., et al., Sequencing data associated with Monnahan et al. 2019. NCBI BioProject. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA484107. Accessed 16 November 2023.
Bohutínská M., et al., Sequencing data associated with Bohutínská et al. 2021. NCBI BioProject. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA592307. Accessed 16 November 2023.
Konečná V., et al., Sequencing data associated with Konečná et al. 2021. NCBI BioProject. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA667586. Accessed 16 November 2023.
Yant L., et al., Sequencing data newly generated for this study. ENA BioProject. https://www.ebi.ac.uk/ena/browser/view/PRJEB83985. Deposited 31 March 2025.