De Novo Mutation and Rapid Protein (Co-)evolution during Meiotic Adaptation in Arabidopsis arenosa
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/P013511/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
33502506
PubMed Central
PMC8097281
DOI
10.1093/molbev/msab001
PII: 6120800
Knihovny.cz E-zdroje
- Klíčová slova
- coevolution, de novo mutations, meiosis, polyploidy, standing variation,
- MeSH
- Arabidopsis genetika MeSH
- biologická adaptace genetika MeSH
- koevoluce MeSH
- meióza genetika MeSH
- molekulární evoluce * MeSH
- mutace MeSH
- tetraploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A sudden shift in environment or cellular context necessitates rapid adaptation. A dramatic example is genome duplication, which leads to polyploidy. In such situations, the waiting time for new mutations might be prohibitive; theoretical and empirical studies suggest that rapid adaptation will largely rely on standing variation already present in source populations. Here, we investigate the evolution of meiosis proteins in Arabidopsis arenosa, some of which were previously implicated in adaptation to polyploidy, and in a diploid, habitat. A striking and unexplained feature of prior results was the large number of amino acid changes in multiple interacting proteins, especially in the relatively young tetraploid. Here, we investigate whether selection on meiosis genes is found in other lineages, how the polyploid may have accumulated so many differences, and whether derived variants were selected from standing variation. We use a range-wide sample of 145 resequenced genomes of diploid and tetraploid A. arenosa, with new genome assemblies. We confirmed signals of positive selection in the polyploid and diploid lineages they were previously reported in and find additional meiosis genes with evidence of selection. We show that the polyploid lineage stands out both qualitatively and quantitatively. Compared with diploids, meiosis proteins in the polyploid have more amino acid changes and a higher proportion affecting more strongly conserved sites. We find evidence that in tetraploids, positive selection may have commonly acted on de novo mutations. Several tests provide hints that coevolution, and in some cases, multinucleotide mutations, might contribute to rapid accumulation of changes in meiotic proteins.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Botany University of Innsbruck Innsbruck Austria
Department of Cell and Developmental Biology John Innes Centre Norwich United Kingdom
Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic
Zobrazit více v PubMed
Alves JM, Carneiro M, Cheng JY, de Matos AL, Rahman MM, Loog L, Campos PF, Wales N, Eriksson A, Manica A, et al.2019. Parallel adaptation of rabbit populations to myxoma virus. Science 363(6433):1319–1326. PubMed PMC
Arnold B, Kim S-T, Bomblies K.. 2015. Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Mol Biol Evol. 32(6):1382–1395. PubMed
Baker Z, Schumer M, Haba Y, Bashkirova L, Holland C, Rosenthal GG, Przeworski M.. 2017. Repeated losses of PRDM9-directed recombination despite the conservation of PRDM9 across vertebrates. Elife 6:e24133. PubMed PMC
Barrett RDH, Schluter D.. 2008. Adaptation from standing genetic variation. Trends Ecol Evol. 23(1):38–44. PubMed
Van Belleghem SM, Vangestel C, De Wolf K, De Corte Z, Möst M, Rastas P, De Meester L, Hendrickx F.. 2018. Evolution at two time frames: polymorphisms from an ancient singular divergence event fuel contemporary parallel evolution. PLoS Genet. 14(11):e1007796. PubMed PMC
Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E.. 2015. The Arabidopsis Information Resource: making and Mining the “Gold Standard” annotated reference plant genome. Genesis 53(8):474–485. PubMed PMC
Besenbacher S, Sulem P, Helgason A, Helgason H, Kristjansson H, Jonasdottir A, Jonasdottir A, Magnusson OT, Thorsteinsdottir U, Masson G, et al.2016. Multi-nucleotide de novo mutations in humans. PLoS Genet. 12(11):e1006315. PubMed PMC
Bhatia G, Patterson N, Sankararaman S, Price AL.. 2013. Estimating and interpreting FST: the impact of rare variants. Genome Res. 23(9):1514–1521. PubMed PMC
Bomblies K. 2020. When everything changes at once: finding a new normal after genome duplication. Proc R Soc Lond B. 287(1939):20202154. PubMed PMC
Bomblies K, Higgins JD, Yant L.. 2015. Meiosis evolves: adaptation to external and internal environments. New Phytol. 208(2):306–323. PubMed
Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N.. 2016. The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role? Chromosoma 125(2):287–300. PubMed PMC
Bomblies K, Madlung A.. 2014. Polyploidy in the Arabidopsis genus. Chromosome Res. 22(2):117–134. PubMed
Brand CL, Wright L, Presgraves DC.. 2019. Positive selection and functional divergence at meiosis genes that mediate crossing over across the Drosophila phylogeny. G3 (Bethesda) 9:3201–3211. PubMed PMC
Charlesworth J, , Eyre-Walker A. 2008. The McDonald-Kreitman Test and Slightly Deleterious Mutations. Mol Biol Evol. 25(6):1007–1015. PubMed
Cifuentes M, Grandont L, Moore G, Chèvre AM, Jenczewski E.. 2010. Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytol. 186(1):29–36. PubMed
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM.. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92. PubMed PMC
Comai L. 2005. The advantages and disadvantages of being polyploid. Nat Rev Genet. 6(11):836–846. PubMed
Davis BH, Poon AFY, Whitlock MC.. 2009. Compensatory mutations are repeatable and clustered within proteins. Proc Biol Sci. 276(1663):1823–1827. PubMed PMC
DePristo MA, Weinreich DM, Hartl DL.. 2005. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet. 6(9):678–687. PubMed
Doyle J, Coate J.. 2019. Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. Int J Plant Sci. 180(1):1–52.
Exposito-Alonso M, Becker C, Schuenemann VJ, Reiter E, Setzer C, Slovak R, Brachi B, Hagmann J, Grimm DG, Chen J, et al.2018. The rate and potential relevance of new mutations in a colonizing plant lineage. PLoS Genet. 14(2):e1007155. PubMed PMC
Fay JC, , Wyckoff GJ, , Wu CI. 2001. Positive and negative selection on the human genome. Genetics 158(3):1227–1234. PubMed PMC
Grantham R. 1974. Amino acid difference formula to help explain protein evolution. Science 185(4154):862–864. PubMed
Grishaeva TM, Bogdanov YF.. 2014. Conservation and variability of synaptonemal complex proteins in phylogenesis of eukaryotes. Int J Evol Biol. 2014:1–16. PubMed PMC
Haenel Q, Roesti M, Moser D, MacColl ADC, Berner D.. 2019. Predictable genome-wide sorting of standing genetic variation during parallel adaptation to basic versus acidic environments in stickleback fish. Evol Lett. 3(1):28–42. PubMed PMC
Harris K, Nielsen R.. 2014. Error-prone polymerase activity causes multinucleotide mutations in humans. Genome Res. 24(9):1445–1454. PubMed PMC
Hermisson J, Pennings PS.. 2005. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169(4):2335–2352. PubMed PMC
Heyting C. 1996. Synaptonemal complexes: structure and function. Curr Opin Cell Biol. 8(3):389–396. PubMed
Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K.. 2012. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet. 8(12):e1003093. PubMed PMC
Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J-F, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, et al.2011. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet. 43(5):476–481. PubMed PMC
Hudson RR, Slatkin M, Maddison WP.. 1992. Estimation of levels of gene flow from DNA sequence data. Genetics 132(2):583–589. PubMed PMC
Jones DT. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 292(2):195–202. PubMed
Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, et al.2012. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484(7392):55–61. PubMed PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al.2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. PubMed PMC
Kolář F, Fuxová G, Záveská E, Nagano AJ, Hyklová L, Lučanová M, Kudoh H, Marhold K.. 2016. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Mol Ecol. 25(16):3929–3949. PubMed
Kumar P, Henikoff S, Ng PC.. 2009. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 4(7):1073–1082. PubMed
Kumar R, Bourbon HM, De Massy B.. 2010. Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes Dev. 24(12):1266–1280. PubMed PMC
Kyriakidou M, Tai HH, Anglin NL, Ellis D, Strömvik MV.. 2018. Current strategies of polyploid plant genome sequence assembly. Front Plant Sci. 9:1660. PubMed PMC
Lai Y-T, Yeung CKL, Omland KE, Pang E-L, Hao Y, Liao B-Y, Cao H-F, Zhang B-W, Yeh C-F, Hung C-M, et al.2019. Standing genetic variation as the predominant source for adaptation of a songbird. Proc Natl Acad Sci U S A. 116(6):2152–2157. PubMed PMC
Lee T, Yang S, Kim E, Ko Y, Hwang S, Shin J, Shim JE Shim H, Kim H, Kim C, et al.2015. AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res. 43:D996–D1002. PubMed PMC
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, arXiv:1303.3997v1 [q-bio.GN]. Available from: http://github.com/lh3/bwa.
Liu Z, Cheema J, Vigouroux M, Hill L, Reed J, Paajanen P, Yant L, Osbourn A.. 2020. Formation and diversification of a paradigm biosynthetic gene cluster in plants. Nat Commun. 11:1–11. PubMed PMC
Maisnier-Patin S, Berg OG, Liljas L, Andersson DI.. 2002. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol. Microbiol. 46(2):355–366. PubMed
Matuszewski S, Hermisson J, Kopp M.. 2015. Catch me if you can: adaptation from standing genetic variation to a moving phenotypic optimum. Genetics 200(4):1255–1274. PubMed PMC
McDonald J, Kreitman M.. 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351(6328):652–654. PubMed
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al.2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20(9):1297–1303. PubMed PMC
Messer PW, Neher RA.. 2012. Estimating the strength of selective sweeps from deep population diversity data. Genetics 191(2):593–605. PubMed PMC
Messer PW, Petrov DA.. 2013. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol Evol. 28(11):659–669. PubMed PMC
Monnahan P, Kolář F, Baduel P, Sailer C, Koch J, Horvath R, Laenen B, Schmickl R, Paajanen P, Šrámková G, et al.2019. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol. 3(3):457–468. PubMed
Morgan C, Zhang H, Henry CE, Franklin FCH, Bomblies K. 2020. Derived alleles of two axis proteins affect meiotic traits in autotetraploid Arabidopsis arenosa. Proc Natl Acad Sci USA. 117(16):8980–8988. PubMed PMC
Moura de Sousa J, Balbontín R, Durão P, Gordo I.. 2017. Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biol. 15(4):e2001741. PubMed PMC
Muir KW, Kschonsak M, Li Y, Metz J, Haering CH, Panne D.. 2016. Structure of the Pds5-Scc1 complex and implications for cohesin function. Cell Rep. 14(9):2116–2126. PubMed
Oleksyk TK, Smith MW, O’Brien SJ.. 2010. Genome-wide scans for footprints of natural selection. Philos Trans R Soc B. 365(1537):185–205. PubMed PMC
Olson-Manning CF, Wagner MR, Mitchell-Olds T.. 2012. Adaptive evolution: evaluating empirical support for theoretical predictions. Nat Rev Genet. 13(12):867–877. PubMed PMC
Orgil O, Matityahu A, Eng T, Guacci V, Koshland D, Onn I.. 2015. A conserved domain in the Scc3 subunit of cohesin mediates the interaction with both Mcd1 and the cohesin loader complex. PLoS Genet. 11(3):e1005036. PubMed PMC
Ormond L, Foll M, Ewing GB, Pfeifer SP, Jensen JD.. 2016. Inferring the age of a fixed beneficial allele. Mol Ecol. 25(1):157–169. PubMed
Ouyang Z, Zheng G, Tomchick DR, Luo X, Yu H.. 2016. Structural basis and IP6 requirement for Pds5-dependent cohesin dynamics. Mol Cell. 62(2):248–259. PubMed PMC
Oziolor EM, Reid NM, Yair S, Lee KM, Guberman VerPloeg S, Bruns PC, Shaw JR, Whitehead A, Matson CW.. 2019. Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science 364(6439):455–457. PubMed
Paajanen P, Kettleborough G, Opez-Girona EL, Giolai M, Heavens D, Baker D, Lister A, Cugliandolo F, Wilde G, Hein I.. 2019. A critical comparison of technologies for a plant genome sequencing project. 8:1–12. PubMed PMC
Parisod C, Holderegger R, Brochmann C.. 2010. Evolutionary consequences of autopolyploidy. New Phytol. 186(1):5–17. PubMed
Pedruzzi G, Barlukova A, Rouzine IM.. 2018. Evolutionary footprint of epistasis. PLoS Comput Biol. 14(9):e1006426. PubMed PMC
Prezeworski M, Coop G, Wall JD.. 2005. The signature of positive selection on standing genetic variation. Evolution (N. Y.) 59(11):2312–2323. PubMed
R Core Team. 2018. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: https://www.r-project.org/
Ralph PL, Coop G.. 2015. The role of standing variation in geographic convergent adaptation. Am Nat. 186(S1):S5–S23. PubMed PMC
Rawat V, Abdelsamad A, Pietzenuk B, Seymour DK, Koenig D, Weigel D, Pecinka A, Schneeberger K.. 2015. Improving the annotation of Arabidopsis lyrata using RNA-Seq data. PLoS One. 10(9):e0137391. PubMed PMC
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M.. 2019. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47(D1):D886–D894. PubMed PMC
Robinson DJS. 2003. An introduction to abstract algebra. Berlin (Germany: ): Walter de Gruyter
Roig MB, Löwe J, Chan K-L, Beckouët F, Metson J, Nasmyth K.. 2014. Structure and function of cohesin’s Scc3/SA regulatory subunit. FEBS Lett. 588(20):3692–3702. PubMed PMC
Rojas Echenique JI, Kryazhimskiy S, Nguyen Ba AN, Desai MM.. 2019. Modular epistasis and the compensatory evolution of gene deletion mutants. PLoS Genet. 15(2):e1007958. PubMed PMC
Rosenberg SC, Corbett KD.. 2015. The multifaceted roles of the HOR MA domain in cellular signaling. J. Cell Biol. 211(4):745–755. PubMed PMC
Sánchez-Morán E, Mercier R, Higgins JD, Armstrong SJ, Jones GH, Franklin FCH.. 2005. A strategy to investigate the plant meiotic proteome. Cytogenet Genome Res. 109(1–3):181–189. PubMed
Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. 2009. PID: the Pathway Interaction Database. Nucleic Acids Res. 37(Suppl 1):D674–D679. PubMed PMC
Schrider DR, Hourmozdi JN, Hahn MW.. 2011. Pervasive multinucleotide mutational events in eukaryotes. Curr Biol. 21(12):1051–1054. PubMed PMC
Smith J, Coop G, Stephens M, Novembre J.. 2018. Estimating time to the common ancestor for a beneficial allele. Mol Biol Evol. 35(4):1003–1017. PubMed PMC
Smith N, Eyre-Walker A.. 2002. Adaptive protein evolution in Drosophila. Nature 415(6875):1022–1024. PubMed
Stenberg P, Saura A.. 2013. Meiosis and its deviations in polyploid animals. Cytogenet Genome Res. 140(2-4):185–203. PubMed
Stephan W. 2019. Selective sweeps. Genetics 211(1):5–13. PubMed PMC
Szamecz B, Boross G, Kalapis D, Kovács K, Fekete G, Farkas Z, Lázár V, Hrtyan M, Kemmeren P, Groot Koerkamp MJA, et al.2014. The genomic landscape of compensatory evolution. PLoS Biol. 12(8):e1001935. PubMed PMC
Szpak M, Mezzavilla M, Ayub Q, Chen Y, Xue Y, Tyler-Smith C.. 2018. FineMAV: prioritizing candidate genetic variants driving local adaptations in human populations. Genome Biol. 19(1):18. PubMed PMC
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595. PubMed PMC
Thompson KA, Osmond MM, Schluter D.. 2019. Parallel genetic evolution and speciation from standing variation. Evol Lett. 3(2):129–141. PubMed PMC
Vitti JJ, Grossman SR, Sabeti PC.. 2013. Detecting natural selection in genomic data. Annu Rev Genet. 47(1):97–120. PubMed
Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB.. 2017. Direct determination of diploid genome sequences. Genome Res. 27(5):757–767. PubMed PMC
Wright KM, Arnold B, Xue K, Surinov M, O’connell J, Bomblies K, Wright S.. 2015. Selection on meiosis genes in diploid and tetraploid Arabidopsis arenosa. Mol Biol Evol. 32(4):944–955. PubMed PMC
Wu M, Kostyun JL, Hahn MW, Moyle LC. 2018. Dissecting the basis of novel trait evolution in a radiation with widespread phylogenetic discordance. Mol Ecol. 27(16):3301–3316. PubMed
Xie KT, Wang G, Thompson AC, Wucherpfennig JI, Reimchen TE, MacColl ADC, Schluter D, Bell MA, Vasquez KM, Kingsley DM.. 2019. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363(6422):81–84. PubMed PMC
Yant L, Hollister J, Wright K, Arnold B, Higgins J, Franklin F, Bomblies K. 2013. Meiotic Adaptation to Genome Duplication in Arabidopsis arenosa. Curr Biol. 23(21):2151–2156. PubMed PMC
Zhang L. 2005. Human SNPs Reveal No Evidence of Frequent Positive Selection. Mol Biol Evol. 22(12):2504–2507. PubMed
Zickler D, Kleckner N.. 1999. Meiotic chromosomes: integrating structure and function. Annu Rev Genet. 33(1):603–754. PubMed
Novelty and Convergence in Adaptation to Whole Genome Duplication
Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives